OpenLink Software

About: Discovering the mechanism that enables pre-symptomatic individuals to transmit the SARS-CoV-2 virus has a significant impact on the possibility of controlling COVID-19 pandemic. To this end, we have developed an evidence based quantitative mechanistic mathematical model. The model explicitly tracks the dynamics of contact and airborne transmission between individuals indoors, and was validated against the observed fundamental attributes of the epidemic, the secondary attack rate (SAR) and serial interval distribution. Using the model we identified the dominant driver of pre-symptomatic transmission, which was found to be contact route, while the contribution of the airborne route is negligible. We provide evidence that a combination of rather easy to implement measures of frequent hand washing, cleaning fomites and avoiding physical contact decreases the risk of infection by an order of magnitude, similarly to wearing masks and gloves.

 Permalink

an Entity references as follows:

Faceted Search & Find service v1.13.91

Alternative Linked Data Documents: Sponger | ODE     Raw Data in: CXML | CSV | RDF ( N-Triples N3/Turtle JSON XML ) | OData ( Atom JSON ) | Microdata ( JSON HTML) | JSON-LD    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] This material is Open Knowledge Creative Commons License Valid XHTML + RDFa
This work is licensed under a Creative Commons Attribution-Share Alike 3.0 Unported License.
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2025 OpenLink Software