OpenLink Software

About: In this paper, we present a new program synthesis algorithm based on reinforcement learning. Given an initial policy (i.e. statistical model) trained off-line, our method uses this policy to guide its search and gradually improves it by leveraging feedback obtained from a deductive reasoning engine. Specifically, we formulate program synthesis as a reinforcement learning problem and propose a new variant of the policy gradient algorithm that can incorporate feedback from a deduction engine into the underlying statistical model. The benefit of this approach is two-fold: First, it combines the power of deductive and statistical reasoning in a unified framework. Second, it leverages deduction not only to prune the search space but also to guide search. We have implemented the proposed approach in a tool called Concord and experimentally evaluate it on synthesis tasks studied in prior work. Our comparison against several baselines and two existing synthesis tools shows the advantages of our proposed approach. In particular, Concord solves 15% more benchmarks compared to Neo, a state-of-the-art synthesis tool, while improving synthesis time by 8.71[Formula: see text] on benchmarks that can be solved by both tools.

 Permalink

an Entity references as follows:

Faceted Search & Find service v1.13.91

Alternative Linked Data Documents: Sponger | ODE     Raw Data in: CXML | CSV | RDF ( N-Triples N3/Turtle JSON XML ) | OData ( Atom JSON ) | Microdata ( JSON HTML) | JSON-LD    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] This material is Open Knowledge Creative Commons License Valid XHTML + RDFa
This work is licensed under a Creative Commons Attribution-Share Alike 3.0 Unported License.
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2025 OpenLink Software