Description
Metadata
Settings
About:
We combine COVID-19 case data with demographic and mobility data to estimate a modified susceptible-infected-recovered (SIR) model for the spread of this disease in the United States. We find that the incidence of infectious COVID-19 individuals has a concave effect on contagion, as would be expected if people have inter-related social networks. We also demonstrate that social distancing and population density have large effects on the rate of contagion. The social distancing in late March and April substantially reduced the number of COVID-19 cases. However, the concave contagion pattern means that when social distancing measures are lifted, the growth rate is considerable but will not be exponential as predicted by standard SIR models. Furthermore, counties with the lowest population density could likely avoid high levels of contagion even with no social distancing. We forecast rates of new cases for COVID-19 under different social distancing norms and find that if social distancing is eliminated there will be a massive increase in the cases of COVID-19, about double what would occur if the US only restored to 50% of the way to normalcy.
Permalink
an Entity references as follows:
Subject of Sentences In Document
Object of Sentences In Document
Explicit Coreferences
Implicit Coreferences
Graph IRI
Count
http://ns.inria.fr/covid19/graph/entityfishing
4
http://ns.inria.fr/covid19/graph/articles
3
Faceted Search & Find service v1.13.91
Alternative Linked Data Documents:
Sponger
|
ODE
Raw Data in:
CXML
|
CSV
| RDF (
N-Triples
N3/Turtle
JSON
XML
) | OData (
Atom
JSON
) | Microdata (
JSON
HTML
) |
JSON-LD
About
This work is licensed under a
Creative Commons Attribution-Share Alike 3.0 Unported License
.
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2024 OpenLink Software