OpenLink Software

About: We combine COVID-19 case data with demographic and mobility data to estimate a modified susceptible-infected-recovered (SIR) model for the spread of this disease in the United States. We find that the incidence of infectious COVID-19 individuals has a concave effect on contagion, as would be expected if people have inter-related social networks. We also demonstrate that social distancing and population density have large effects on the rate of contagion. The social distancing in late March and April substantially reduced the number of COVID-19 cases. However, the concave contagion pattern means that when social distancing measures are lifted, the growth rate is considerable but will not be exponential as predicted by standard SIR models. Furthermore, counties with the lowest population density could likely avoid high levels of contagion even with no social distancing. We forecast rates of new cases for COVID-19 under different social distancing norms and find that if social distancing is eliminated there will be a massive increase in the cases of COVID-19, about double what would occur if the US only restored to 50% of the way to normalcy.

 Permalink

an Entity references as follows:

Faceted Search & Find service v1.13.91

Alternative Linked Data Documents: Sponger | ODE     Raw Data in: CXML | CSV | RDF ( N-Triples N3/Turtle JSON XML ) | OData ( Atom JSON ) | Microdata ( JSON HTML) | JSON-LD    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] This material is Open Knowledge Creative Commons License Valid XHTML + RDFa
This work is licensed under a Creative Commons Attribution-Share Alike 3.0 Unported License.
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2024 OpenLink Software