OpenLink Software

About: Optimal neural network architecture is a very important factor for computational complexity and memory footprints of neural networks. In this regard, a robust pruning method based on interval adjoints significance analysis is presented in this paper to prune irrelevant and redundant nodes from a neural network. The significance of a node is defined as a product of a node’s interval width and an absolute maximum of first-order derivative of that node’s interval. Based on the significance of nodes, one can decide how much to prune from each layer. We show that the proposed method works effectively on hidden and input layers by experimenting on famous and complex datasets of machine learning. In the proposed method, a node is removed based on its significance and bias is updated for remaining nodes.

 Permalink

an Entity references as follows:

Faceted Search & Find service v1.13.91

Alternative Linked Data Documents: Sponger | ODE     Raw Data in: CXML | CSV | RDF ( N-Triples N3/Turtle JSON XML ) | OData ( Atom JSON ) | Microdata ( JSON HTML) | JSON-LD    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] This material is Open Knowledge Creative Commons License Valid XHTML + RDFa
This work is licensed under a Creative Commons Attribution-Share Alike 3.0 Unported License.
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2024 OpenLink Software