Description
Metadata
Settings
About:
The availability of intensive care beds during the Covid-19 epidemic is crucial to guarantee the best possible treatment to severely affected patients. In this work we show a simple strategy for short-term prediction of Covid-19 ICU beds, that has proved very effective during the Italian outbreak in February to May 2020. Our approach is based on an optimal ensemble of two simple methods: a generalized linear mixed regression model which pools information over different areas, and an area-specific non-stationary integer autoregressive methodology. Optimal weights are estimated using a leave-last-out rationale. The approach has been set up and validated during the epidemic in Italy. A report of its performance for predicting ICU occupancy at Regional level is included.
Permalink
an Entity references as follows:
Subject of Sentences In Document
Object of Sentences In Document
Explicit Coreferences
Implicit Coreferences
Graph IRI
Count
http://ns.inria.fr/covid19/graph/entityfishing
6
http://ns.inria.fr/covid19/graph/articles
3
Faceted Search & Find service v1.13.91
Alternative Linked Data Documents:
Sponger
|
ODE
Raw Data in:
CXML
|
CSV
| RDF (
N-Triples
N3/Turtle
JSON
XML
) | OData (
Atom
JSON
) | Microdata (
JSON
HTML
) |
JSON-LD
About
This work is licensed under a
Creative Commons Attribution-Share Alike 3.0 Unported License
.
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2025 OpenLink Software