Description
Metadata
Settings
About:
The COVID-19 pandemic has highlighted the need for robust data linkage systems and methods for identifying outbreaks of disease in near real-time. Using self-reported app data and the Secure Anonymised Information Linkage (SAIL) Databank, we demonstrate the use of sophisticated spatial modelling for near-real-time prediction of COVID-19 prevalence at small-area resolution to inform strategic government policy areas. A pre-requisite to an effective control strategy is that predictions need to be accompanied by estimates of their precision, to guard against over-reaction to potentially spurious features of 'best guess' predictions. In the UK, important emerging risk-factors such as social deprivation or ethnicity vary over small distances, hence risk needs to be modelled at fine spatial resolution to avoid aggregation bias. We demonstrate that existing geospatial statistical methods originally developed for global health applications are well-suited to this task and can be used in an anonymised databank environment, thus preserving the privacy of the individuals who contribute their data.
Permalink
an Entity references as follows:
Subject of Sentences In Document
Object of Sentences In Document
Explicit Coreferences
Implicit Coreferences
Graph IRI
Count
http://ns.inria.fr/covid19/graph/entityfishing
3
http://ns.inria.fr/covid19/graph/articles
3
Faceted Search & Find service v1.13.91
Alternative Linked Data Documents:
Sponger
|
ODE
Raw Data in:
CXML
|
CSV
| RDF (
N-Triples
N3/Turtle
JSON
XML
) | OData (
Atom
JSON
) | Microdata (
JSON
HTML
) |
JSON-LD
About
This work is licensed under a
Creative Commons Attribution-Share Alike 3.0 Unported License
.
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2025 OpenLink Software