Description
Metadata
Settings
About:
With the rising success of adversarial attacks on many NLP tasks, systems which actually operate in an adversarial scenario need to be reevaluated. For this purpose, we pose the following research question: How difficult is it to fool automatic short answer grading systems? In particular, we investigate the robustness of the state of the art automatic short answer grading system proposed by Sung et al. towards cheating in the form of universal adversarial trigger employment. These are short token sequences that can be prepended to students’ answers in an exam to artificially improve their automatically assigned grade. Such triggers are especially critical as they can easily be used by anyone once they are found. In our experiments, we discovered triggers which allow students to pass exams with passing thresholds of [Formula: see text] without answering a single question correctly. Furthermore, we show that such triggers generalize across models and datasets in this scenario, nullifying the defense strategy of keeping grading models or data secret.
Permalink
an Entity references as follows:
Subject of Sentences In Document
Object of Sentences In Document
Explicit Coreferences
Implicit Coreferences
Graph IRI
Count
http://ns.inria.fr/covid19/graph/entityfishing
8
http://ns.inria.fr/covid19/graph/articles
3
Faceted Search & Find service v1.13.91
Alternative Linked Data Documents:
Sponger
|
ODE
Raw Data in:
CXML
|
CSV
| RDF (
N-Triples
N3/Turtle
JSON
XML
) | OData (
Atom
JSON
) | Microdata (
JSON
HTML
) |
JSON-LD
About
This work is licensed under a
Creative Commons Attribution-Share Alike 3.0 Unported License
.
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2025 OpenLink Software