Description
Metadata
Settings
About:
The Dominance-based Rough Set Approach (DRSA) is an innovative preference learning approach. It takes as input a set of objects (learning set) described with respect to a collection of condition and decision attributes. It generates a set of if-then decision rules. Initial versions of dominance based rough set approximation methods assume a single decision maker. Furthermore, the proposed extensions to group decision making mainly use an input oriented aggregation strategy, which requires a high level of agreement between the decision makers. In this paper, we propose an output oriented aggregation strategy to coherently combine different sets of decision rules obtained from different decision makers. The proposed aggregation algorithm is illustrated by using real-world data relative to a business school admission where two decision makers are involved. Results show that aggregation algorithm is able to reproduce the individual assignments of students with a very limited preferential information loss.
Permalink
an Entity references as follows:
Subject of Sentences In Document
Object of Sentences In Document
Explicit Coreferences
Implicit Coreferences
Graph IRI
Count
http://ns.inria.fr/covid19/graph/entityfishing
6
http://ns.inria.fr/covid19/graph/articles
3
Faceted Search & Find service v1.13.91
Alternative Linked Data Documents:
Sponger
|
ODE
Raw Data in:
CXML
|
CSV
| RDF (
N-Triples
N3/Turtle
JSON
XML
) | OData (
Atom
JSON
) | Microdata (
JSON
HTML
) |
JSON-LD
About
This work is licensed under a
Creative Commons Attribution-Share Alike 3.0 Unported License
.
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2024 OpenLink Software