Description
Metadata
Settings
About:
Document network embedding aims at learning representations for a structured text corpus i.e. when documents are linked to each other. Recent algorithms extend network embedding approaches by incorporating the text content associated with the nodes in their formulations. In most cases, it is hard to interpret the learned representations. Moreover, little importance is given to the generalization to new documents that are not observed within the network. In this paper, we propose an interpretable and inductive document network embedding method. We introduce a novel mechanism, the Topic-Word Attention (TWA), that generates document representations based on the interplay between word and topic representations. We train these word and topic vectors through our general model, Inductive Document Network Embedding (IDNE), by leveraging the connections in the document network. Quantitative evaluations show that our approach achieves state-of-the-art performance on various networks and we qualitatively show that our model produces meaningful and interpretable representations of the words, topics and documents.
Permalink
an Entity references as follows:
Subject of Sentences In Document
Object of Sentences In Document
Explicit Coreferences
Implicit Coreferences
Graph IRI
Count
http://ns.inria.fr/covid19/graph/entityfishing
3
http://ns.inria.fr/covid19/graph/articles
3
Faceted Search & Find service v1.13.91
Alternative Linked Data Documents:
Sponger
|
ODE
Raw Data in:
CXML
|
CSV
| RDF (
N-Triples
N3/Turtle
JSON
XML
) | OData (
Atom
JSON
) | Microdata (
JSON
HTML
) |
JSON-LD
About
This work is licensed under a
Creative Commons Attribution-Share Alike 3.0 Unported License
.
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2024 OpenLink Software