OpenLink Software

About: In this paper, we formulate keyphrase extraction from scholarly articles as a sequence labeling task solved using a BiLSTM-CRF, where the words in the input text are represented using deep contextualized embeddings. We evaluate the proposed architecture using both contextualized and fixed word embedding models on three different benchmark datasets, and compare with existing popular unsupervised and supervised techniques. Our results quantify the benefits of: (a) using contextualized embeddings over fixed word embeddings; (b) using a BiLSTM-CRF architecture with contextualized word embeddings over fine-tuning the contextualized embedding model directly; and (c) using domain-specific contextualized embeddings (SciBERT). Through error analysis, we also provide some insights into why particular models work better than the others. Lastly, we present a case study where we analyze different self-attention layers of the two best models (BERT and SciBERT) to better understand their predictions.

 Permalink

an Entity references as follows:

Faceted Search & Find service v1.13.91

Alternative Linked Data Documents: Sponger | ODE     Raw Data in: CXML | CSV | RDF ( N-Triples N3/Turtle JSON XML ) | OData ( Atom JSON ) | Microdata ( JSON HTML) | JSON-LD    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] This material is Open Knowledge Creative Commons License Valid XHTML + RDFa
This work is licensed under a Creative Commons Attribution-Share Alike 3.0 Unported License.
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2025 OpenLink Software