OpenLink Software

About: Abstract Human rhinovirus (HRV)-A and -B is a common cause of upper respiratory tract infections. Recently, a third species, HRV-C, was categorized based on molecular typing studies. The results showed that the HRV-C genome had diverged from that of HRV-A and -B. Despite its late identification, increasing evidence suggests that HRV-C causes more severe pathogenic infections than HRV-A or -B; however, a large amount of epidemiological data is required to confirm this association in different clinical settings. Consequently, a simple and rapid method for identifying HRV-C is required to expedite such epidemiological studies. Here, two degenerate primer sets (HEV and HRVC) were designed based on bioinformatic analyses. The HEV set targeting the fifth IRES domain sequence within the 5′-UTR, which is highly conserved among enteroviruses, was designed to detect all enteroviruses, whereas the HRVC set, which targeted the VP2 coding region, was designed to detect HRV-C alone. Both primer sets were tested against a panel of standard enteroviruses and clinical lavage samples. HEV detected all enteroviruses tested whereas HRVC was specific for HRV-C. Although the primer design strategy was confirmed with a limited number of samples, extensive tests are required to be applied in clinical settings.

 Permalink

an Entity references as follows:

Faceted Search & Find service v1.13.91

Alternative Linked Data Documents: Sponger | ODE     Raw Data in: CXML | CSV | RDF ( N-Triples N3/Turtle JSON XML ) | OData ( Atom JSON ) | Microdata ( JSON HTML) | JSON-LD    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] This material is Open Knowledge Creative Commons License Valid XHTML + RDFa
This work is licensed under a Creative Commons Attribution-Share Alike 3.0 Unported License.
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2024 OpenLink Software