Description
Metadata
Settings
About:
Abstract Quickly detecting harmful cascades in networks can allow us to analyze the causes and prevent further spreading of destructive influence. Since it is often impossible to observe the state of all nodes in a network, a common method is to detect harmful cascades from sparsely placed sensors. However, the harmful cascades are usually dynamic (e.g., the cascade initiators and diffusion trajectories can change over the time), which can severely destroy the robustness of selected sensors. Meanwhile the large scale of current networks greatly increases the time complexity of sensor selection. Motivated by the observation, in this paper we investigate the scalable sensor selection problem for early detection of dynamic harmful cascades in networks. Specifically, we first put forward a dynamic susceptible-infected model to describe harmful cascades, and formally define a detection time minimization (DTM) problem which focuses on effective sensors placement for early detection of dynamic cascades. We prove that it is #P-hard to calculate the objective function exactly and propose two Monte-Carlo methods to estimate it efficiently. We prove the NP-hardness of DTM problem and design a corresponding greedy algorithm. Based on that, we propose an efficient upper bound based greedy (UBG) algorithm with the theoretical performance guarantee reserved. To further meet different types of large-scale networks, we propose two accelerations of UBG: Quickest-Path-UBG for sparse networks and Local-Reduction-UBG for dense networks to improve the time complexity. The experimental results on synthetic and real-world social networks demonstrate the practicality of our approaches.
Permalink
an Entity references as follows:
Subject of Sentences In Document
Object of Sentences In Document
Explicit Coreferences
Implicit Coreferences
Graph IRI
Count
http://ns.inria.fr/covid19/graph/entityfishing
3
http://ns.inria.fr/covid19/graph/articles
3
Faceted Search & Find service v1.13.91
Alternative Linked Data Documents:
Sponger
|
ODE
Raw Data in:
CXML
|
CSV
| RDF (
N-Triples
N3/Turtle
JSON
XML
) | OData (
Atom
JSON
) | Microdata (
JSON
HTML
) |
JSON-LD
About
This work is licensed under a
Creative Commons Attribution-Share Alike 3.0 Unported License
.
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2025 OpenLink Software