OpenLink Software

About: Treewidth is one of the most prominent structural parameters. While numerous theoretical results establish tractability under the assumption of fixed treewidth, the practical success of exploiting this parameter is far behind what theoretical runtime bounds have promised. In particular, a naive application of dynamic programming (DP) on tree decompositions (TDs) suffers already from instances of medium width. In this paper, we present several measures to advance this paradigm towards general applicability in practice: We present nested DP, where different levels of abstractions are used to (recursively) compute TDs of a given instance. Further, we integrate the concept of hybrid solving, where subproblems hidden by the abstraction are solved by classical search-based solvers, which leads to an interleaving of parameterized and classical solving. Finally, we provide nested DP algorithms and implementations relying on database technology for variants and extensions of Boolean satisfiability. Experiments indicate that the advancements are promising.

 Permalink

an Entity references as follows:

Faceted Search & Find service v1.13.91

Alternative Linked Data Documents: Sponger | ODE     Raw Data in: CXML | CSV | RDF ( N-Triples N3/Turtle JSON XML ) | OData ( Atom JSON ) | Microdata ( JSON HTML) | JSON-LD    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] This material is Open Knowledge Creative Commons License Valid XHTML + RDFa
This work is licensed under a Creative Commons Attribution-Share Alike 3.0 Unported License.
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2025 OpenLink Software