Description
Metadata
Settings
About:
How effective are 'lockdown' measures and other policy interventions to curb the spread of Covid-19 in emerging market cities that are characterized by large heterogeneity and high levels of informality? The most commonly used models to predict the spread of Covid-19 are SEIR models which lack the spatial resolution necessary to answer this question. We develop an agent-based model of social interactions in which the distribution of agents across wards, as well as their travel and interactions are calibrated to real data for Cape Town, South Africa. We characterize the elasticity of various policy interventions including increased likelihood to self-isolate, travel restrictions, assembly bans, and behavioural interventions like washing hands or wearing masks. Even in an informal setting, where agents' ability to self-isolate is compromised, a lockdown remains an effective intervention. In our model, the lockdown enacted in South Africa reduced expected fatalities in Cape Town by 26% and the expected demand for intensive care beds by 46%. However, our best calibration predicts a substantially higher case load, demand for ICU beds, and expected number of deaths than the current best estimate published for Cape Town.
Permalink
an Entity references as follows:
Subject of Sentences In Document
Object of Sentences In Document
Explicit Coreferences
Implicit Coreferences
Graph IRI
Count
http://ns.inria.fr/covid19/graph/entityfishing
3
http://ns.inria.fr/covid19/graph/articles
3
Faceted Search & Find service v1.13.91
Alternative Linked Data Documents:
Sponger
|
ODE
Raw Data in:
CXML
|
CSV
| RDF (
N-Triples
N3/Turtle
JSON
XML
) | OData (
Atom
JSON
) | Microdata (
JSON
HTML
) |
JSON-LD
About
This work is licensed under a
Creative Commons Attribution-Share Alike 3.0 Unported License
.
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2025 OpenLink Software