OpenLink Software

About: Since the SARS-CoV-2 virus outbreak has been recognized as a pandemic on March 11, 2020, several models have been proposed to forecast its evolution following the governments' interventions. In particular, the need for fine-grained predictions, based on real-time and fluctuating data, has highlighted the limitations of traditional SEIR models and parameter fitting, encouraging the study of new models for greater accuracy. In this paper we propose a novel approach to epidemiological parameter fitting and epidemic forecasting, based on an extended version of the SEIR compartmental model and on an auto-differentiation technique for partially observable ODEs (Ordinary Differential Equations). The results on publicly available data show that the proposed model is able to fit the daily cases curve with greater accuracy, obtaining also a lower forecast error. Furthermore, the forecast accuracy allows to predict the peak with an error margin of less than one week, up to 50 days before the peak happens.

 Permalink

an Entity references as follows:

Faceted Search & Find service v1.13.91

Alternative Linked Data Documents: Sponger | ODE     Raw Data in: CXML | CSV | RDF ( N-Triples N3/Turtle JSON XML ) | OData ( Atom JSON ) | Microdata ( JSON HTML) | JSON-LD    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] This material is Open Knowledge Creative Commons License Valid XHTML + RDFa
This work is licensed under a Creative Commons Attribution-Share Alike 3.0 Unported License.
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2025 OpenLink Software