Description
Metadata
Settings
About:
Network representation learning aims to learn the low dimensional vector of the nodes in a network while maintaining the inherent properties of the original information. Existing algorithms focus on the single coarse-grained topology of nodes or text information alone, which cannot describe complex information networks. However, node structure and attribution are interdependent, indecomposable. Therefore, it is essential to learn the representation of node based on both the topological structure and node additional attributes. In this paper, we propose a multi-granularity complex network representation learning model (MNRL), which integrates topological structure and additional information at the same time, and presents these fused information learning into the same granularity semantic space that through fine-to-coarse to refine the complex network. Experiments show that our method can not only capture indecomposable multi-granularity information, but also retain various potential similarities of both topology and node attributes. It has achieved effective results in the downstream work of node classification and the link prediction on real-world datasets.
Permalink
an Entity references as follows:
Subject of Sentences In Document
Object of Sentences In Document
Explicit Coreferences
Implicit Coreferences
Graph IRI
Count
http://ns.inria.fr/covid19/graph/entityfishing
3
http://ns.inria.fr/covid19/graph/articles
3
Faceted Search & Find service v1.13.91
Alternative Linked Data Documents:
Sponger
|
ODE
Raw Data in:
CXML
|
CSV
| RDF (
N-Triples
N3/Turtle
JSON
XML
) | OData (
Atom
JSON
) | Microdata (
JSON
HTML
) |
JSON-LD
About
This work is licensed under a
Creative Commons Attribution-Share Alike 3.0 Unported License
.
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2025 OpenLink Software