OpenLink Software

About: Better understanding of aerosol dynamics is an important step for improving personal exposure assessments in indoor environments. Although the limitation of the assumptions in a well-mixed model is well known, there has been very little research reported in the published literature on the discrepancy of exposure assessments between numerical models which take account of gravitational effects and the well-mixed model. A new Eulerian-type drift-flux model has been developed to simulate particle dispersion and personal exposure in a two-zone geometry, which accounts for the drift velocity resulting from gravitational settling and diffusion. To validate the numerical model, a small-scale chamber was fabricated. The airflow characteristics and particle concentrations were measured by a phase Doppler Anemometer. Both simulated airflow and concentration profiles agree well with the experimental results. A strong inhomogeneous concentration was observed experimentally for 10 μm aerosols. The computational model was further applied to study a simple hypothetical, yet more realistic scenario. The aim was to explore different levels of exposure predicted by the new model and the well-mixed model. Aerosols are initially uniformly distributed in one zone and subsequently transported and dispersed to an adjacent zone through an opening. Owing to the significant difference in the rates of transport and dispersion between aerosols and gases, inferred from the results, the well-mixed model tends to overpredict the concentration in the source zone, and under-predict the concentration in the exposed zone. The results are very useful to illustrate that the well-mixed assumption must be applied cautiously for exposure assessments as such an ideal condition may not be applied for coarse particles.

 Permalink

an Entity references as follows:

Faceted Search & Find service v1.13.91

Alternative Linked Data Documents: Sponger | ODE     Raw Data in: CXML | CSV | RDF ( N-Triples N3/Turtle JSON XML ) | OData ( Atom JSON ) | Microdata ( JSON HTML) | JSON-LD    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] This material is Open Knowledge Creative Commons License Valid XHTML + RDFa
This work is licensed under a Creative Commons Attribution-Share Alike 3.0 Unported License.
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2025 OpenLink Software