Description
Metadata
Settings
About:
Sequential recommendation leverages the temporal information of users’ transactions as transition dependencies for better inferring user preference, which has become increasingly popular in academic research and practical applications. Short-term transition dependencies contain the information of partial item orders, while long-term transition dependencies infer long-range user preference, the two dependencies are mutually restrictive and complementary. Although some work investigates unifying both long-term and short-term dependencies for better performance, they still neglect the fact that short-term interactions are multi-folds, which are either individual-level interactions or union-level interactions. Existing sequential recommendations mainly focus on user’s individual (i.e., individual-level) interactions but ignore the important collective influence at union-level. Since union-level interactions can reflect that human decisions are made based on multiple items he/she has already interacted, ignoring such interactions can result in the disability of capturing the collective influence between items. To alleviate this issue, we proposed a Joint Relational Dependency learning (JRD-L) for sequential recommendation that exploits both long-term and short-term preferences at individual-level and union-level. Specifically, JRD-L combines long-term user preferences with short-term interests by measuring short-term pair relations at individual-level and union-level. Moreover, JRD-L can alleviate the sparsity problem of union-level interactions by adding more descriptive details to each item, which is carried by individual-level relations. Extensive numerical experiments demonstrate JRD-L outperforms state-of-the-art baselines for the sequential recommendation.
Permalink
an Entity references as follows:
Subject of Sentences In Document
Object of Sentences In Document
Explicit Coreferences
Implicit Coreferences
Graph IRI
Count
http://ns.inria.fr/covid19/graph/entityfishing
6
http://ns.inria.fr/covid19/graph/articles
3
Faceted Search & Find service v1.13.91
Alternative Linked Data Documents:
Sponger
|
ODE
Raw Data in:
CXML
|
CSV
| RDF (
N-Triples
N3/Turtle
JSON
XML
) | OData (
Atom
JSON
) | Microdata (
JSON
HTML
) |
JSON-LD
About
This work is licensed under a
Creative Commons Attribution-Share Alike 3.0 Unported License
.
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2025 OpenLink Software