Description
Metadata
Settings
About:
Inferring multi-label user profile plays a significant role in providing individual recommendations and exact-marketing, etc. Current researches on multi-label user profile either ignore the implicit associations among labels or do not consider the user and label semantic information in the social networks. Therefore, the user profile inferred always does not take full advantage of the global information sufficiently. To solve above problem, a new insight is presented to introduce implicit association labels as the prior knowledge enhancement and jointly embed the user and label semantic information. In this paper, a graph convolutional network with implicit associations (GCN-IA) method is proposed to obtain user profile. Specifically, a probability matrix is first designed to capture the implicit associations among labels for user representation. Then, we learn user embedding and label embedding jointly based on user-generated texts, relationships and label information. On four real-world datasets in Weibo, experimental results demonstrate that GCN-IA produces a significant improvement compared with some state-of-the-art methods.
Permalink
an Entity references as follows:
Subject of Sentences In Document
Object of Sentences In Document
Explicit Coreferences
Implicit Coreferences
Graph IRI
Count
http://ns.inria.fr/covid19/graph/entityfishing
3
http://ns.inria.fr/covid19/graph/articles
3
Faceted Search & Find service v1.13.91
Alternative Linked Data Documents:
Sponger
|
ODE
Raw Data in:
CXML
|
CSV
| RDF (
N-Triples
N3/Turtle
JSON
XML
) | OData (
Atom
JSON
) | Microdata (
JSON
HTML
) |
JSON-LD
About
This work is licensed under a
Creative Commons Attribution-Share Alike 3.0 Unported License
.
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2024 OpenLink Software