OpenLink Software

About: Recent exploration of cellulose nanomaterials has resulted in the creation of Oxone(®)-Mediated TEMPO-Oxidized Cellulose Nanomaterials (OTO-CNMs). These materials, when incorporated into a polymer matrix, have properties showing increased flux, decreased membrane resistance, and improved clearance, making them an ideal material for dialysis. This study is the first to focus on the implementation of OTO-CNMs into hollow fiber membranes and a comparison of these membranes for ultrafiltration and dialysis. Ultrafiltration and dialysis were performed using bovine serum albumin (BSA), lysozyme, and urea to analyze various properties of each hollow fiber membrane type. The results presented in this study provide the first quantitative evaluation of the clearance and sieving characteristics of Oxone(®)-Mediated TEMPO-Oxidized Cellulose-Nanomaterial-doped cellulose triacetate mixed-matrix hemodialyzers. While the cellulose nanomaterials increased flux (10–30%) in ultrafiltration mode, this was offset by increased removal of albumin. However, in dialysis mode, these materials drastically increased the mass transfer of components (50–100%), which could lead to significantly lower dialysis times for patients. This change in the performance between the two different modes is most likely due to the increased porosity of the cellulose nanomaterials.

 Permalink

an Entity references as follows:

Faceted Search & Find service v1.13.91

Alternative Linked Data Documents: Sponger | ODE     Raw Data in: CXML | CSV | RDF ( N-Triples N3/Turtle JSON XML ) | OData ( Atom JSON ) | Microdata ( JSON HTML) | JSON-LD    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] This material is Open Knowledge Creative Commons License Valid XHTML + RDFa
This work is licensed under a Creative Commons Attribution-Share Alike 3.0 Unported License.
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2024 OpenLink Software