Description
Metadata
Settings
About:
Rapid increases in data volume and variety pose a challenge to safe drug prescription for health professionals like doctors and dentists. This is addressed by our study, which presents innovative approaches in mining data from drug corpus and extracting feature vectors to combine this knowledge with individual patient medical profiles. Within our three-tiered framework—the prediction layer, the knowledge layer and the presentation layer—we describe multiple approaches in computing similarity ratios from the feature vectors, illustrated with an example of applying the framework in a typical medical clinic. Experimental evaluation shows that the word embedding model performs better than the adverse network model, with a F score of 0.75. The F score is a common metrics used for evaluating the performance of classification algorithms. Similarity to a drug the patient is allergic to or is taking are important considerations for the suitability of a drug for prescription. Hence, such an approach, when integrated within the clinical work-flow, will reduce prescription errors thereby increasing patient health outcomes.
Permalink
an Entity references as follows:
Subject of Sentences In Document
Object of Sentences In Document
Explicit Coreferences
Implicit Coreferences
Graph IRI
Count
http://ns.inria.fr/covid19/graph/entityfishing
6
http://ns.inria.fr/covid19/graph/articles
3
Faceted Search & Find service v1.13.91
Alternative Linked Data Documents:
Sponger
|
ODE
Raw Data in:
CXML
|
CSV
| RDF (
N-Triples
N3/Turtle
JSON
XML
) | OData (
Atom
JSON
) | Microdata (
JSON
HTML
) |
JSON-LD
About
This work is licensed under a
Creative Commons Attribution-Share Alike 3.0 Unported License
.
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2024 OpenLink Software