OpenLink Software

About: The systematic identification of infectious, yet unreported, individuals is critical for the containment of the COVID-19 pandemic. We present a strategy for identifying the location, timing and extent of testing that maximizes information gain for such infections. The optimal testing strategy relies on Bayesian experimental design and forecasting epidemic models that account for time dependent interventions. It is applicable at the onset and spreading of the epidemic and can forewarn for a possible recurrence of the disease after relaxation of interventions. We examine its application in Switzerland and show that it can provide timely and systematic guidance for the effective identification of infectious individuals with finite testing resources. The methodology and the open source code are readily adaptable to countries around the world.

 Permalink

an Entity references as follows:

Faceted Search & Find service v1.13.91

Alternative Linked Data Documents: Sponger | ODE     Raw Data in: CXML | CSV | RDF ( N-Triples N3/Turtle JSON XML ) | OData ( Atom JSON ) | Microdata ( JSON HTML) | JSON-LD    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] This material is Open Knowledge Creative Commons License Valid XHTML + RDFa
This work is licensed under a Creative Commons Attribution-Share Alike 3.0 Unported License.
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2025 OpenLink Software