Description
Metadata
Settings
About:
The systematic identification of infectious, yet unreported, individuals is critical for the containment of the COVID-19 pandemic. We present a strategy for identifying the location, timing and extent of testing that maximizes information gain for such infections. The optimal testing strategy relies on Bayesian experimental design and forecasting epidemic models that account for time dependent interventions. It is applicable at the onset and spreading of the epidemic and can forewarn for a possible recurrence of the disease after relaxation of interventions. We examine its application in Switzerland and show that it can provide timely and systematic guidance for the effective identification of infectious individuals with finite testing resources. The methodology and the open source code are readily adaptable to countries around the world.
Permalink
an Entity references as follows:
Subject of Sentences In Document
Object of Sentences In Document
Explicit Coreferences
Implicit Coreferences
Graph IRI
Count
http://ns.inria.fr/covid19/graph/entityfishing
3
http://ns.inria.fr/covid19/graph/articles
3
Faceted Search & Find service v1.13.91
Alternative Linked Data Documents:
Sponger
|
ODE
Raw Data in:
CXML
|
CSV
| RDF (
N-Triples
N3/Turtle
JSON
XML
) | OData (
Atom
JSON
) | Microdata (
JSON
HTML
) |
JSON-LD
About
This work is licensed under a
Creative Commons Attribution-Share Alike 3.0 Unported License
.
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2025 OpenLink Software