OpenLink Software

About: Coronaviruses are enveloped RNA viruses from the Coronaviridae family affecting neurological, gastrointestinal, hepatic and respiratory systems. In late 2019 a new member of this family belonging to the Betacoronavirus genera (referred to as COVID-19) originated and spread quickly across the world calling for strict containment plans and policies. In most countries in the world, the outbreak of the disease has been serious and the number of confirmed COVID-19 cases has increased daily, while, fortunately the recovered COVID-19 cases have also increased. Clearly, forecasting the “confirmed” and “recovered” COVID-19 cases helps planning to control the disease and plan for utilization of health care resources. Time series models based on statistical methodology are useful to model time-indexed data and for forecasting. Autoregressive time series models based on two-piece scale mixture normal distributions, called TP–SMN–AR models, is a flexible family of models involving many classical symmetric/asymmetric and light/heavy tailed autoregressive models. In this paper, we use this family of models to analyze the real world time series data of confirmed and recovered COVID-19 cases.

 Permalink

an Entity references as follows:

Faceted Search & Find service v1.13.91

Alternative Linked Data Documents: Sponger | ODE     Raw Data in: CXML | CSV | RDF ( N-Triples N3/Turtle JSON XML ) | OData ( Atom JSON ) | Microdata ( JSON HTML) | JSON-LD    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] This material is Open Knowledge Creative Commons License Valid XHTML + RDFa
This work is licensed under a Creative Commons Attribution-Share Alike 3.0 Unported License.
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2024 OpenLink Software