Description
Metadata
Settings
About:
Coronaviruses are enveloped RNA viruses from the Coronaviridae family affecting neurological, gastrointestinal, hepatic and respiratory systems. In late 2019 a new member of this family belonging to the Betacoronavirus genera (referred to as COVID-19) originated and spread quickly across the world calling for strict containment plans and policies. In most countries in the world, the outbreak of the disease has been serious and the number of confirmed COVID-19 cases has increased daily, while, fortunately the recovered COVID-19 cases have also increased. Clearly, forecasting the “confirmed” and “recovered” COVID-19 cases helps planning to control the disease and plan for utilization of health care resources. Time series models based on statistical methodology are useful to model time-indexed data and for forecasting. Autoregressive time series models based on two-piece scale mixture normal distributions, called TP–SMN–AR models, is a flexible family of models involving many classical symmetric/asymmetric and light/heavy tailed autoregressive models. In this paper, we use this family of models to analyze the real world time series data of confirmed and recovered COVID-19 cases.
Permalink
an Entity references as follows:
Subject of Sentences In Document
Object of Sentences In Document
Explicit Coreferences
Implicit Coreferences
Graph IRI
Count
http://ns.inria.fr/covid19/graph/entityfishing
7
http://ns.inria.fr/covid19/graph/articles
3
Faceted Search & Find service v1.13.91
Alternative Linked Data Documents:
Sponger
|
ODE
Raw Data in:
CXML
|
CSV
| RDF (
N-Triples
N3/Turtle
JSON
XML
) | OData (
Atom
JSON
) | Microdata (
JSON
HTML
) |
JSON-LD
About
This work is licensed under a
Creative Commons Attribution-Share Alike 3.0 Unported License
.
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Copyright © 2009-2024 OpenLink Software