About: Background. During the outbreak of the emergent severe acute respiratory syndrome (SARS) infection, >30% of the ∼8000 infected persons were health care workers. The highly infectious nature of SARS coronavirus (SARS-CoV) compelled our pathologists to consider biosafety issues in the autopsy room and for tissue processing procedures. Methods. A specially designed biosafety level 3 (BSL-3) autopsy laboratory was constructed and divided into a clean area, a semicontaminated area, a contaminated area, and 2 buffer zones. High-efficiency particulate air filters were placed in the air supply and exhaust systems. Laminar air flow was from the clean areas to the less clean areas. The negative pressures of the contaminated, semicontaminated, and clean areas were approximately -50 pa, -25 pa, and -5 pa, respectively. Personal protective equipment, including gas mask, impermeable protective clothing, and 3 layers of gloves worn during autopsies; the equipment was decontaminated before it was allowed to exit the facility. Strict BSL-3 practices were followed. Results. When a given concentration of particulate sarin simulant was introduced into the contaminated area, it could not be detected in either the semicontaminated area or clean area, and particles >0.3 μm in size were not detected in the exhaust air. A total of 16 complete postmortem examinations for probable and suspected SARS were performed during a 2-month period. Of these, 7 reported confirmed cases of SARS. None of the 23 pathologists and technicians who participated in these autopsies was infected with SARS-CoV. Conclusions. Our experience suggests that BSL-3 laboratory operating principles should be among the special requirements for performing autopsies of contaminated bodies and that they can safeguard the clinicians and the environment involved in these procedures.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Background. During the outbreak of the emergent severe acute respiratory syndrome (SARS) infection, >30% of the ∼8000 infected persons were health care workers. The highly infectious nature of SARS coronavirus (SARS-CoV) compelled our pathologists to consider biosafety issues in the autopsy room and for tissue processing procedures. Methods. A specially designed biosafety level 3 (BSL-3) autopsy laboratory was constructed and divided into a clean area, a semicontaminated area, a contaminated area, and 2 buffer zones. High-efficiency particulate air filters were placed in the air supply and exhaust systems. Laminar air flow was from the clean areas to the less clean areas. The negative pressures of the contaminated, semicontaminated, and clean areas were approximately -50 pa, -25 pa, and -5 pa, respectively. Personal protective equipment, including gas mask, impermeable protective clothing, and 3 layers of gloves worn during autopsies; the equipment was decontaminated before it was allowed to exit the facility. Strict BSL-3 practices were followed. Results. When a given concentration of particulate sarin simulant was introduced into the contaminated area, it could not be detected in either the semicontaminated area or clean area, and particles >0.3 μm in size were not detected in the exhaust air. A total of 16 complete postmortem examinations for probable and suspected SARS were performed during a 2-month period. Of these, 7 reported confirmed cases of SARS. None of the 23 pathologists and technicians who participated in these autopsies was infected with SARS-CoV. Conclusions. Our experience suggests that BSL-3 laboratory operating principles should be among the special requirements for performing autopsies of contaminated bodies and that they can safeguard the clinicians and the environment involved in these procedures.
Subject
  • Severe acute respiratory syndrome
  • Histology
  • Safety
  • Viral respiratory tract infections
  • Bird diseases
  • Syndromes affecting the respiratory system
  • Zoonotic bacterial diseases
  • Atypical pneumonias
  • Bat virome
  • Sarbecovirus
  • Chiroptera-borne diseases
  • Infraspecific virus taxa
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software