About: Abstract To obtain information about the structure and evolution of the nucleocapsid (N) protein of the coronavirus mouse hepatitis virus (MHV), we determined the entire nucleotide sequences of the N genes of MHV-A59, MHV-3, MHV-S, and MHV-1 from cDNA clones. At the nucleotide level, the N gene sequences of these viral strains, and that of MHV-JHM, were more than 92% conserved overall. Even higher nucleotide sequence identity was found in the 3′ untranslated regions (3′ UTRs) of the five strains, which may reflect the role of the 3′ UTR in negative-strand RNA synthesis. All five N genes were found to encode markedly basic proteins of 454 or 455 residues having at least 94% sequence identity in pairwise comparisons. However, amino acid sequence divergences were found to be clustered in two short segments of N, putative spacer regions that, together, constituted only 11% of the molecule. Thus, the data suggest that the MHV N protein is composed of three highly conserved structural domains connected to each other by regions that have much less constraint on their amino acid sequences. The first two conserved domains contain most of the excess of basic amino acid residues; by contrast, the carboxy-terminal domain is acidic. Finally, we noted that four of the five N genes contain an internal open reading frame that potentially encodes a protein of 207 amino acids having a large proportion of basic and hydrophobic residues.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Abstract To obtain information about the structure and evolution of the nucleocapsid (N) protein of the coronavirus mouse hepatitis virus (MHV), we determined the entire nucleotide sequences of the N genes of MHV-A59, MHV-3, MHV-S, and MHV-1 from cDNA clones. At the nucleotide level, the N gene sequences of these viral strains, and that of MHV-JHM, were more than 92% conserved overall. Even higher nucleotide sequence identity was found in the 3′ untranslated regions (3′ UTRs) of the five strains, which may reflect the role of the 3′ UTR in negative-strand RNA synthesis. All five N genes were found to encode markedly basic proteins of 454 or 455 residues having at least 94% sequence identity in pairwise comparisons. However, amino acid sequence divergences were found to be clustered in two short segments of N, putative spacer regions that, together, constituted only 11% of the molecule. Thus, the data suggest that the MHV N protein is composed of three highly conserved structural domains connected to each other by regions that have much less constraint on their amino acid sequences. The first two conserved domains contain most of the excess of basic amino acid residues; by contrast, the carboxy-terminal domain is acidic. Finally, we noted that four of the five N genes contain an internal open reading frame that potentially encodes a protein of 207 amino acids having a large proportion of basic and hydrophobic residues.
part of
is abstract of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software