About: The COVID-19 pandemic provides an urgent example where a gap exists between availability of state-of-the-art diagnostics and current needs. As assay details and primer sequences become widely known, many laboratories could perform diagnostic tests using methods such as RT-PCR or isothermal RT-LAMP amplification. A key advantage of RT-LAMP based approaches compared to RT-PCR is that RT-LAMP is known to be robust in detecting targets from unprocessed samples. In addition, RT-LAMP assays are performed at a constant temperature enabling speed, simplicity, and point-of-use testing. Here, we provide the details of an RT-LAMP isothermal assay for the detection of SARS-CoV-2 virus with performance comparable to currently approved tests using RT-PCR. We characterize the assay by introducing swabs in virus spiked synthetic nasal fluids, moving the swab to viral transport medium (VTM), and using a volume of that VTM for performing the amplification without an RNA extraction kit. The assay has a Limit-of-Detection (LOD) of 50 RNA copies/μL in the VTM solution within 20 minutes, and LOD of 5000 RNA copies/μL in the nasal solution. Additionally, we show the utility of this assay for real-time point-of-use testing by demonstrating detection of SARS-CoV-2 virus in less than 40 minutes using an additively manufactured cartridge and a smartphone-based reader. Finally, we explore the speed and cost advantages by comparing the required resources and workflows with RT-PCR. This work could accelerate the development and availability of SARS-CoV-2 diagnostics by proving alternatives to conventional laboratory benchtop tests.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • The COVID-19 pandemic provides an urgent example where a gap exists between availability of state-of-the-art diagnostics and current needs. As assay details and primer sequences become widely known, many laboratories could perform diagnostic tests using methods such as RT-PCR or isothermal RT-LAMP amplification. A key advantage of RT-LAMP based approaches compared to RT-PCR is that RT-LAMP is known to be robust in detecting targets from unprocessed samples. In addition, RT-LAMP assays are performed at a constant temperature enabling speed, simplicity, and point-of-use testing. Here, we provide the details of an RT-LAMP isothermal assay for the detection of SARS-CoV-2 virus with performance comparable to currently approved tests using RT-PCR. We characterize the assay by introducing swabs in virus spiked synthetic nasal fluids, moving the swab to viral transport medium (VTM), and using a volume of that VTM for performing the amplification without an RNA extraction kit. The assay has a Limit-of-Detection (LOD) of 50 RNA copies/μL in the VTM solution within 20 minutes, and LOD of 5000 RNA copies/μL in the nasal solution. Additionally, we show the utility of this assay for real-time point-of-use testing by demonstrating detection of SARS-CoV-2 virus in less than 40 minutes using an additively manufactured cartridge and a smartphone-based reader. Finally, we explore the speed and cost advantages by comparing the required resources and workflows with RT-PCR. This work could accelerate the development and availability of SARS-CoV-2 diagnostics by proving alternatives to conventional laboratory benchtop tests.
part of
is abstract of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software