About: Background: Severe acute respiratory syndrome (SARS) is an emerging infectious disease caused by a new coronavirus strain, SARS-CoV. Specific proteomic patterns might be present in serum in response to the infection and could be useful for early detection of the disease. Methods: Using surface-enhanced laser desorption/ionization (SELDI) ProteinChip technology, we profiled and compared serum proteins of 39 patients with early-stage SARS infection and 39 non-SARS patients who were suspected cases during the SARS outbreak period. Proteomic patterns associated with SARS were identified by bioinformatic and biostatistical analyses. Features of interest were then purified and identified by tandem mass spectrometry. Results: Twenty proteomic features were significantly different between the 2 groups. Fifteen were increased in the SARS group, and 5 were decreased. Their concentrations were correlated with 2 or more clinical and/or biochemical variables. Two were correlated with the SARS-CoV viral load. Hierarchical clustering analysis showed that a majority of the SARS patients (95%) had similar serum proteomic profiles and identified 2 subgroups with poor prognosis. ROC curve analysis identified individual features as potential biomarkers for SARS diagnosis (areas under ROC curves, 0.733–0.995). ROC curve areas were largest for an N-terminal fragment of complement C3c α chain (m/z 28 119) and an internal fragment of fibrinogen α-E chain (m/z 5908). Immunoglobulin κ light chain (m/z 24 505) positively correlated with viral load. Conclusions: Specific proteomic fingerprints in the sera of adult SARS patients could be used to identify SARS cases early during onset with high specificity and sensitivity.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Background: Severe acute respiratory syndrome (SARS) is an emerging infectious disease caused by a new coronavirus strain, SARS-CoV. Specific proteomic patterns might be present in serum in response to the infection and could be useful for early detection of the disease. Methods: Using surface-enhanced laser desorption/ionization (SELDI) ProteinChip technology, we profiled and compared serum proteins of 39 patients with early-stage SARS infection and 39 non-SARS patients who were suspected cases during the SARS outbreak period. Proteomic patterns associated with SARS were identified by bioinformatic and biostatistical analyses. Features of interest were then purified and identified by tandem mass spectrometry. Results: Twenty proteomic features were significantly different between the 2 groups. Fifteen were increased in the SARS group, and 5 were decreased. Their concentrations were correlated with 2 or more clinical and/or biochemical variables. Two were correlated with the SARS-CoV viral load. Hierarchical clustering analysis showed that a majority of the SARS patients (95%) had similar serum proteomic profiles and identified 2 subgroups with poor prognosis. ROC curve analysis identified individual features as potential biomarkers for SARS diagnosis (areas under ROC curves, 0.733–0.995). ROC curve areas were largest for an N-terminal fragment of complement C3c α chain (m/z 28 119) and an internal fragment of fibrinogen α-E chain (m/z 5908). Immunoglobulin κ light chain (m/z 24 505) positively correlated with viral load. Conclusions: Specific proteomic fingerprints in the sera of adult SARS patients could be used to identify SARS cases early during onset with high specificity and sensitivity.
Subject
  • Virology
  • Severe acute respiratory syndrome
  • Viral respiratory tract infections
  • Bird diseases
  • Cluster analysis algorithms
  • Syndromes affecting the respiratory system
  • Zoonotic bacterial diseases
  • Stable distributions
  • Atypical pneumonias
  • Bat virome
  • Sarbecovirus
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software