About: BACKGROUND: Mesenchymal stem cells (MSCs) derived from bone marrow have potent stabilizing effects for the treatment of acute respiratory distress syndrome (ARDS). However, low efficiency and survival in MSC homing to injured lung tissue remains to be solved. Therefore, the aim of this study was to assess whether large intergenic noncoding RNA (LincRNA)-p21 promote MSC migration and survival capacity through hypoxic preconditioning in vitro. METHODS: MSCs were cultured and divided into the normoxia culture group (20% O2) and hypoxia culture group (1% O2). To determine roles and mechanisms, lentivirus vector-mediated LincRNA-p21 knockdown of MSCs and hypoxia-inducible factor (HIF-1α) inhibitor KC7F2 were introduced. Additionally, MSC migration was analyzed by scratch test and transwell migration assays. MSC proliferation was tested by cell counting kit-8 and trypan blue dye. Apoptosis was detected by Annexin V-PE/7-AAD stained flow cytometry. Moreover, LincRNA-p21 and HIF-1α mRNA was measured by reverse transcription-polymerase chain reaction, and HIF-1α and CXCR4/7 protein were assayed by western blot (WB) or enzyme-linked immunosorbent assay (ELISA). Apoptosis protein caspase-3 and cleaved-caspase-3 were investigated by WB analysis. Considering interactions between VHL and HIF-1α under LincRNA-p21 effect, co-immunoprecipitation was detected. RESULTS: Hypoxic preconditioning MSC promoted migration capacity and MSC survival than normoxia culture group. MSCs induced by hypoxic preconditioning evoked an increase in expression of LincRNA-p21, HIF-1α, and CXCR4/7(both were chemokine stromal-derived factor-1(SDF-1) receptors). Contrarily, blockade of LincRNA-p21 by shRNA and HIF-1α inhibitor KC7F2 abrogated upregulation of hypoxic preconditioning induced CXCR4/7 in MSCs, cell migration, and survival. Furthermore, co-immunoprecipitation assay revealed that hypoxic preconditioning isolated VHL and HIF-1α protein by increasing HIF-1α expression. CONCLUSIONS: Hypoxic preconditioning was identified as a promoting factor of MSC migration and survival capacity. LincRNA-p21 promotes MSC migration and survival capacity through HIF-1α/CXCR4 and CXCR7 pathway under hypoxic preconditioning in vitro.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • BACKGROUND: Mesenchymal stem cells (MSCs) derived from bone marrow have potent stabilizing effects for the treatment of acute respiratory distress syndrome (ARDS). However, low efficiency and survival in MSC homing to injured lung tissue remains to be solved. Therefore, the aim of this study was to assess whether large intergenic noncoding RNA (LincRNA)-p21 promote MSC migration and survival capacity through hypoxic preconditioning in vitro. METHODS: MSCs were cultured and divided into the normoxia culture group (20% O2) and hypoxia culture group (1% O2). To determine roles and mechanisms, lentivirus vector-mediated LincRNA-p21 knockdown of MSCs and hypoxia-inducible factor (HIF-1α) inhibitor KC7F2 were introduced. Additionally, MSC migration was analyzed by scratch test and transwell migration assays. MSC proliferation was tested by cell counting kit-8 and trypan blue dye. Apoptosis was detected by Annexin V-PE/7-AAD stained flow cytometry. Moreover, LincRNA-p21 and HIF-1α mRNA was measured by reverse transcription-polymerase chain reaction, and HIF-1α and CXCR4/7 protein were assayed by western blot (WB) or enzyme-linked immunosorbent assay (ELISA). Apoptosis protein caspase-3 and cleaved-caspase-3 were investigated by WB analysis. Considering interactions between VHL and HIF-1α under LincRNA-p21 effect, co-immunoprecipitation was detected. RESULTS: Hypoxic preconditioning MSC promoted migration capacity and MSC survival than normoxia culture group. MSCs induced by hypoxic preconditioning evoked an increase in expression of LincRNA-p21, HIF-1α, and CXCR4/7(both were chemokine stromal-derived factor-1(SDF-1) receptors). Contrarily, blockade of LincRNA-p21 by shRNA and HIF-1α inhibitor KC7F2 abrogated upregulation of hypoxic preconditioning induced CXCR4/7 in MSCs, cell migration, and survival. Furthermore, co-immunoprecipitation assay revealed that hypoxic preconditioning isolated VHL and HIF-1α protein by increasing HIF-1α expression. CONCLUSIONS: Hypoxic preconditioning was identified as a promoting factor of MSC migration and survival capacity. LincRNA-p21 promotes MSC migration and survival capacity through HIF-1α/CXCR4 and CXCR7 pathway under hypoxic preconditioning in vitro.
subject
  • RNA
  • Pulmonology
  • Intensive care medicine
  • Non-coding RNA
  • Cell cycle
  • Stem cells
  • Causes of death
  • Respiratory physiology
  • Syndromes affecting the respiratory system
  • Respiratory diseases principally affecting the interstitium
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software