comment
| - Groepentheorie is in de wiskunde de studie van groepen, ook te omschrijven als de studie van symmetrieën. Groepen worden in de wiskunde veel gebruikt om de symmetrie van een wiskundig object mee te beschrijven. De in een groep besloten symmetrie wordt bepaald door de eigenschappen die onder de toegestane transformaties niet veranderen.
- La teoria dei gruppi è la branca della matematica che si occupa dello studio dei gruppi. In astratto, e in breve, un gruppo è una struttura algebrica caratterizzata da un'operazione binaria associativa, dotata di elemento neutro e per la quale ogni elemento della struttura possiede elemento inverso; un semplice esempio di gruppo è dato dall'insieme dei numeri interi, con l'operazione dell'addizione. Una buona gamma di definizioni di termini utilizzati per sviluppare la teoria dei gruppi è raccolta nel glossario di teoria dei gruppi.
- Teoria grup – dział algebry, uważany za dość autonomiczną dziedzinę matematyki (w szczególności teoria grup abelowych, tj. przemiennych), który bada własności struktur algebraicznych nazywanych grupami, czyli zbiorów z wyróżnionym łącznym dwuargumentowym działaniem wewnętrznym mającym element neutralny i w którym każdy element jest odwracalny.
- Теория групп — раздел общей алгебры, изучающий алгебраические структуры, называемые группами, и их свойства. Группа является центральным понятием в общей алгебре, так как многие важные алгебраические структуры, такие как кольца, поля, векторные пространства, являются группами с расширенным набором операций и аксиом. Группы возникают во всех областях математики, и методы теории групп оказывают сильное влияние на многие разделы алгебры. В процессе развития теории групп построен мощный инструментарий, во многом определивший специфику общей алгебры в целом, сформирован собственный глоссарий, элементы которого активно заимствуются смежными разделами математики и приложениями. Наиболее развитые ветви теории групп — линейные алгебраические группы и группы Ли — стали самостоятельными областями мат
- In abstract algebra, group theory studies the algebraic structures known as groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as rings, fields, and vector spaces, can all be seen as groups endowed with additional operations and axioms. Groups recur throughout mathematics, and the methods of group theory have influenced many parts of algebra. Linear algebraic groups and Lie groups are two branches of group theory that have experienced advances and have become subject areas in their own right.
- من أجل التطرق إلى نظرية المجموعات في العلوم الاجتماعية، انظر إلى مجموعة اجتماعية. في الرياضيات والجبر التجريدي، نظرية الزُمَر (بالإنجليزية: Group Theory) هي فرع من الرياضيات يهتم بدراسة بُنى جبرية معروفة باسم الزمر وخواصها.مفهوم الزمرة مركزي بالنسبة إلى الجبر التجريدي إضافة إلى بُنى جبرية أخرى كالحلقة والحقل والفضاء المتجهي. الحلقات والحقول والفضاءات المتجهية كلهن زمر مزودةً بعمليات وموضوعات إضافية. انتُهي من تصنيف الزمر المنتهية البسيطة سنة 1980، متطلبا الأمرُ عن ما يزيد على عشرة آلاف صفحة من البحث.
- La grupo-teorio aŭ grupoteorio aŭ teorio de grupoj studas en ĝenerala formo operaciojn, kiuj estas plej ofte uzataj en matematiko kaj en ĝiaj branĉoj, ekz-e adicion de nombroj, adicion de vektoroj, sinsekvan plenumadon de transformoj ktp. Samtempe, teorio de grupoj studas ne arbitrajn operaciojn, sed nur tiajn, kiuj havas kelkajn bazajn ecojn, listigitajn en la difino de grupo.
- En aquest article es desenvoluparà un enfocament tècnic de la teoria de grups, per una introducció planera vegeu: Introducció a la teoria de grups La teoria de grups dins la matemàtica estudia les propietats dels grups, i com classificar-los. Un grup matemàtic és un magma (un parell ), on G és un conjunt no buit i * una llei de composició interna, això és , que verifica: 1.
* (associativitat) 2.
* (element neutre) 3.
* (element invers) En altres paraules, un grup és un conjunt amb una operació binària associativa, tancada, que té element neutre i inversos. Exemples:
- Dalam matematika dan aljabar abstrak, teori grup mempelajari struktur aljabar yang dikenal sebagai grup. Konsep grup sangat penting dalam aljabar abstrak: struktur aljabar terkenal lainnya, seperti gelanggang, medan, dan ruang vektor, semua dilihat sebagai grup yang diberkahi dengan tambahan operasi dan aksioma. Grup dalam matematika, dan metode teori grup mempengaruhi banyak bagian aljabar. dan grup Lie adalah dua cabang teori grup yang telah mengalami kemajuan dan menjadi bidang subjek dengan sendiri.
- En álgebra abstracta, la teoría de grupos estudia la estructura algebraica conocida como grupo, que es un conjunto no vacío dotado de una operación interna. Sus objetivos son, entre otros, la clasificación de los grupos, el estudio de sus propiedades y sus aplicaciones tanto dentro como fuera de las matemáticas. El orden de un grupo es su cardinalidad; sobre la base de él, los grupos pueden clasificarse en grupos de orden finito o de orden infinito. La clasificación de los grupos simples de orden finito es uno de los mayores logros matemáticos del siglo XX.
- Gruppteori är inom abstrakt algebra, studiet av de algebraiska strukturer som kallas grupper.
- 在数学和抽象代数中,群论(英語:Group theory)研究名为群的代数结构。 群在抽象代数中具有基本的重要地位:许多代数结构,包括环、域和向量空间等可以看作是在群的基础上添加新的运算和公理而形成的。群的概念在数学的许多分支都有出现,而且群论的研究方法也对抽象代数的其它分支有重要影响。和李群作为群论的分支,在经历了重大的发展之后,已经形成相对独立的研究领域。 群论的重要性还体现在物理学和化学的研究中,因为许多不同的物理结构,如晶体结构和氢原子结构可以用群论方法来进行建模。于是群论和相关的群表示论在物理学和化学中有大量的应用。 群论中的重要结果,有限单群分类是20世纪数学最重要的结果之一。该定理的证明是集体努力的结果,它的证明出现在1960年和1980年之间出版的超过10,000页的期刊上。
- Teorie grup je matematická disciplína zabývající se studiem grup. Jde o podobor algebry. Má mnoho aplikací v celé matematice i v dalších oborech – fyzice, informatice či chemii.
- Στα μαθηματικά και την αφηρημένη άλγεβρα, η θεωρία ομάδων είναι το πεδίο που μελετά τις γνωστές ως ομάδες. Η έννοια της ομάδας είναι θεμελιώδης στην αφηρημένη άλγεβρα: Άλλες γνωστές αλγεβρικές δομές, όπως οι δακτύλιοι, τα σώματα, και οι διανυσματικοί χώροι, μπορούν να αντιμετωπιστούν σαν ομάδες που έχουν εφοδιαστεί με επιπρόσθετες πράξεις και αξιώματα. Οι ομάδες συναντώνται επανειλημμένα σε όλο το φάσμα των μαθηματικών, και οι μέθοδοι της θεωρίας ομάδων έχουν επηρεάσει πολλούς τομείς της άλγεβρας. Οι και οι είναι δύο κλάδοι της θεωρίας ομάδων οι οποίοι έχουν εξελιχθεί αρκετά ώστε να αποτελούν ερευνητικά πεδία από μόνοι τους.
- Теорія груп — розділ математики, який вивчає властивості груп. Група — це алгебраїчна структура з двомісною операцією, і для цієї операції виконуються такі властивості: асоціативність, існування нейтрального елемента, існування оберненого елемента. Поняття групи є узагальненням понять група симетрій, група перестановок. Наприклад, в кубика Рубика множина всіх трансформацій (що можливі за рахунок повороту граней) є групою, оскільки дві послідовні трансформації утворюють нову трансформацію, для кожної трансформації існує обернена, нейтральний елемент — відсутність трансформацій.
- Aljebra abstraktuan, talde-teoriak talde bezala ezagutzen den egitura aljebraikoa ikertzen du, hutsik ez dagoen multzo bat eta barne eragiketa bat dena. Bere helburuak, besteak beste, taldeak sailkatzea, euren propietateak eta aplikazioak matematikaren barruan zein kanpoan egitea dira. Talde baten ordena bere kardinalitatea da; hura oinarri hartuta, ordena finituko edo ordena infinituko taldeetan sailka daitezke taldeak. Ordena finituko talde bakunen sailkapena XX. mendeko lorpen matematiko handienetako bat da.
- Em Matemática e em Álgebra Abstrata, a teoria dos grupos é o ramo que estuda as estruturas algébricas chamadas de grupos. De forma mais poética, O conceito de grupo é fundamental para a álgebra abstrata: outras bem conhecidas estruturas algébricas, como os anéis, corpos, e espaços vetoriais, podem todas ser vistas como grupos dotados de operações e axiomas adicionais. Grupos ocorrem em todas as partes da matemática, e os métodos da teoria dos grupos influenciaram fortemente vários ramos da álgebra. Os e os grupos de Lie são dois ramos da teoria dos grupos que experimentaram enormes avanços e por isso são estudados como sub-matérias de maior importância.
- En mathématique, plus précisément en algèbre générale, la théorie des groupes est la discipline qui étudie les structures algébriques appelées groupes. Le développement de la théorie des groupes est issu de la théorie des nombres, de la théorie des équations algébriques et de la géométrie. La théorie des groupes est étroitement liée à la théorie des représentations. Ensemble, elles ont plusieurs applications en physique théorique, chimie, science des matériaux et cryptographie asymétrique.
- 群論(ぐんろん、英語: group theory)とは、群を研究する学問。群の概念は抽象代数学における中心的な概念。 環・体・ベクトル空間などは、演算や公理が付与された群と看做すことができる。 群論の方法は代数学の大部分に強い影響を与えている。 線形代数群とリー群の理論は群論の一分野。特に発展を遂げており、独自の適用範囲を持っている。 結晶や、水素原子などの構造の多くは、で表現できる。このように、群論は、物理学や化学の中に多くの実例・応用例がある。 1960年代~80年代に発表された総計1万ページを超える論文によって、完全な有限単純群の分類が達成された。これは多くの数学者の共同作業の賜物であり、20世紀後半の数学において最も重要な業績の一つである。
- 군론(群論, 영어: group theory)은 군에 대해 연구하는 대수학의 한 분야이다. 수학의 여러 분야의 기초가 되며, 대칭성을 다루는 특성 탓에 물리학이나 화학 분야에서도 응용된다.
- Die Gruppentheorie als mathematische Disziplin untersucht die algebraische Struktur von Gruppen. Anschaulich besteht eine Gruppe aus den Symmetrien eines Objekts oder einer Konfiguration zusammen mit jener Verknüpfung, die durch das Hintereinanderausführen dieser Symmetrien gegeben ist. So bilden beispielsweise die Drehungen eines regelmäßigen -Ecks in der Ebene, mit denen die Figur auf sich selbst abgebildet werden kann, eine Gruppe mit Elementen. Um dieses Konzept allgemein zu fassen, hat sich eine knappe und mächtige Definition herausgebildet: Demnach ist eine Gruppe eine Menge zusammen mit einer zweistelligen inneren Verknüpfung (durch die jedem geordneten Paar von Elementen eindeutig ein Element dieser Menge als Resultat zugeordnet wird), wenn diese Verknüpfung assoziativ ist und es
|