About: Grothendieck trace formula   Goto Sponge  NotDistinct  Permalink

An Entity of Type : owl:Thing, within Data Space : covidontheweb.inria.fr associated with source document(s)

In algebraic geometry, the Grothendieck trace formula expresses the number of points of a variety over a finite field in terms of the trace of the Frobenius endomorphism on its cohomology groups. There are several generalizations: the Frobenius endomorphism can be replaced by a more general endomorphism, in which case the points over a finite field are replaced by its fixed points, and there is also a more general version for a sheaf over the variety, where the cohomology groups are replaced by cohomology with coefficients in the sheaf.

AttributesValues
label
  • Grothendieck trace formula
  • Grothendiecks spårformel
comment
  • In algebraic geometry, the Grothendieck trace formula expresses the number of points of a variety over a finite field in terms of the trace of the Frobenius endomorphism on its cohomology groups. There are several generalizations: the Frobenius endomorphism can be replaced by a more general endomorphism, in which case the points over a finite field are replaced by its fixed points, and there is also a more general version for a sheaf over the variety, where the cohomology groups are replaced by cohomology with coefficients in the sheaf.
  • Inom matematiken är Grothendiecks spårformel en formel som uttrycker antalet punkter på en varietet över en ändlig kropp i termer av spåret av på dess kohomologigrupper. Det finns flera generaliseringar: Frobeniusendomorfin kan ersättas med en mer allmän endomorfi, så att punkterna över en ändlig kropp ersätts med dess fixpunkter, eller alternativt kan man utveckla en formel för kärven över en varietet, så att kohomologigrupperna ersätts med kohomologin med koefficienter i kärven. Grothendiecks spårformel är en analogi i algebraisk geometri av in algebraisk topologi.
sameAs
topic
described by
Subject
dbo:wikiPageID
dbo:wikiPageRevisionID
dbo:wikiPageWikiLink
is primary topic of
wasDerivedFrom
dbo:abstract
  • Inom matematiken är Grothendiecks spårformel en formel som uttrycker antalet punkter på en varietet över en ändlig kropp i termer av spåret av på dess kohomologigrupper. Det finns flera generaliseringar: Frobeniusendomorfin kan ersättas med en mer allmän endomorfi, så att punkterna över en ändlig kropp ersätts med dess fixpunkter, eller alternativt kan man utveckla en formel för kärven över en varietet, så att kohomologigrupperna ersätts med kohomologin med koefficienter i kärven. Grothendiecks spårformel är en analogi i algebraisk geometri av in algebraisk topologi. En användning av Grothendiecks spårformel är att uttrycka av en varietet över en ändlig kropp, eller mer allmänt L-funktionen av ett kärve som summan över spår av Frobeniusendomorfin på kohomologigrupper. Detta är ett av stegen i beviset av Weilförmodandena. generaliserar formeln till .
  • In algebraic geometry, the Grothendieck trace formula expresses the number of points of a variety over a finite field in terms of the trace of the Frobenius endomorphism on its cohomology groups. There are several generalizations: the Frobenius endomorphism can be replaced by a more general endomorphism, in which case the points over a finite field are replaced by its fixed points, and there is also a more general version for a sheaf over the variety, where the cohomology groups are replaced by cohomology with coefficients in the sheaf. The Grothendieck trace formula is an analogue in algebraic geometry of the Lefschetz fixed-point theorem in algebraic topology. One application of the Grothendieck trace formula is to express the zeta function of a variety over a finite field, or more generally the L-series of a sheaf, as a sum over traces of Frobenius on cohomology groups. This is one of the steps used in the proof of the Weil conjectures. Behrend's trace formula generalizes the formula to algebraic stacks.
dbo:wikiPageLength
dbp:wikiPageUsesTemplate
is sameAs of
is topic of
is dbo:wikiPageWikiLink of
is Wikipage redirect of
is Wikipage disambiguates of
is topic of
is http://vocab.deri.ie/void#inDataset of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software