This HTML5 document contains 30 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

PrefixNamespace IRI
n4https://doi.org/10.2196/
dcthttp://purl.org/dc/terms/
covidprhttp://ns.inria.fr/covid19/property/
fabiohttp://purl.org/spar/fabio/
dcehttp://purl.org/dc/elements/1.1/
schemahttp://schema.org/
rdfshttp://www.w3.org/2000/01/rdf-schema#
bibohttp://purl.org/ontology/bibo/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
covidhttp://ns.inria.fr/covid19/
xsdhhttp://www.w3.org/2001/XMLSchema#
n7http://ns.inria.fr/covid19/PMC7282475#
Subject Item
covid:PMC7282475
rdf:type
schema:ScholarlyArticle fabio:ResearchPaper bibo:AcademicArticle
rdfs:isDefinedBy
covid:dataset-1-2
dct:title
Machine Learning to Detect Self-Reporting of Symptoms, Testing Access, and Recovery Associated With COVID-19 on Twitter: Retrospective Big Data Infoveillance Study
dce:creator
Carvalho, Darlinton Cuomo, Raphael Cai, Mingxiang Sanchez, Travis Purushothaman, Vidya Bardier, Cortni Shah, Neal Nali, Matthew Liang, Bryan Fittler, Andras Mackey, Tim Li, Jiawei Bian, Jiang
dct:source
Medline; PMC; WHO
dct:abstract
n7:abstract
dct:issued
2020-06-08
bibo:doi
10.2196/19509
bibo:pmid
32490846
dct:license
cc-by
schema:url
n4:19509
covidpr:hasTitle
n7:title
fabio:hasPubMedCentralId
PMC7282475
fabio:hasPubMedId
32490846
schema:publication
JMIR Public Health Surveill
covidpr:hasBody
n7:body_text