This HTML5 document contains 175 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

PrefixNamespace IRI
dbthttp://dbpedia.org/resource/Template:
dbpedia-svhttp://sv.dbpedia.org/resource/
wikipedia-enhttp://en.wikipedia.org/wiki/
dbrhttp://dbpedia.org/resource/
n22https://archive.org/details/foundationsofmod0003wisb/page/
dbpedia-hehttp://he.dbpedia.org/resource/
n32https://covidontheweb.inria.fr:4443/about/id/entity/http/dbpedia.org/resource/Ring_(mathematics)
n25http://dbpedia.org/resource/Ring_(mathematics)
dcthttp://purl.org/dc/terms/
n24http://localhost:8890/about/id/entity/http/dbpedia.org/resource/
rdfshttp://www.w3.org/2000/01/rdf-schema#
n5http://dbpedia.org/resource/Matrix_(mathematics)
dbpedia-cshttp://cs.dbpedia.org/resource/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n18http://dbpedia.org/resource/Schur'
n23https://books.google.com/books%3Fid=hQTvAAAAMAAJ&q=endomorphism+
n17https://covidontheweb.inria.fr:4443/about/id/entity/http/dbpedia.org/resource/
n19http://dbpedia.org/resource/Algebra_(ring_theory)
dbphttp://dbpedia.org/property/
xsdhhttp://www.w3.org/2001/XMLSchema#
n30http://dbpedia.org/resource/*
dbohttp://dbpedia.org/ontology/
n31http://dbpedia.org/resource/Category_(mathematics)
dbpedia-jahttp://ja.dbpedia.org/resource/
n29http://dbpedia.org/resource/Idempotent_element_(ring_theory)
dbchttp://dbpedia.org/resource/Category:
dbpedia-plhttp://pl.dbpedia.org/resource/
n20http://rdf.freebase.com/ns/m.
n10https://covidontheweb.inria.fr:4443/about/id/entity/http/dbpedia.org/resource/Schur'
wdhttp://www.wikidata.org/entity/
n40http://purl.org/linguistics/gold/
dbpedia-nlhttp://nl.dbpedia.org/resource/
n35https://global.dbpedia.org/id/
n41http://dbpedia.org/resource/Field_(mathematics)
n33http://dbpedia.org/resource/Module_(mathematics)
provhttp://www.w3.org/ns/prov#
foafhttp://xmlns.com/foaf/0.1/
n39http://dbpedia.org/resource/Mitchell'
wdrshttp://www.w3.org/2007/05/powder-s#
n16http://en.wikipedia.org/wiki/Endomorphism_ring?oldid=1104382182&ns=
n26http://dbpedia.org/resource/Endomorphism_ring#
owlhttp://www.w3.org/2002/07/owl#
Subject Item
dbr:Endomorphism_ring
rdfs:label
Okruh endomorfismů Endomorfismenring 自己準同型環 Pierścień endomorfizmów Endomorphism ring Endomorfiring
rdfs:comment
Inom matematiken är endomorfiringen av en abelsk grupp X, betecknad med End(X), mängden av alla homomorfier av X till sig själv. Additionen definieras som punktvis addition av funktioner och multiplikationen definieras som funktionssammansättning. In de algebra, een deelgebied van de wiskunde, bestaat de endomorfismenring van een abelse groep uit de endomorfismen van die groep. Deze endomorfismen vormen een ring, onder de elementsgewijze optelling en de functiecompositie als vermenigvuldiging. 抽象代数学において、アーベル群 X の自己準同型環(英: endomorphism ring)End(X) は、X からそれ自身への準同型写像(X 上の自己準同型)すべてからなる集合である。加法は()で定義され、積は写像の合成で定義される。 自己準同型環の元となる「準同型」が何を指すものかは文脈によって異なり、これは考えている対象の圏に依存する。その結果、自己準同型環は対象のいくつかの内在的な性質を受け継いでいる。自己準同型環はしばしばある環上の多元環(代数)であり、自己準同型多元環(英: endomorphism algebra; 自己準同型代数)とも呼ばれる。 Okruh endomorfismů je matematická struktura z oboru abstraktní algebry. Jejími prvky jsou endomorfismy nějakého objektu (jiné struktury) a dvě operace – skládání endomorfismů tohoto objektu, která realizuje „násobení“, a původní operace sčítání na objektu, přičemž výsledná struktura splňuje axiomy okruhu. Nulovým prvkem je endomorfismus zobrazující vše na nulový prvek původní struktury a neutrálním prvkem vzhledem k „násobení“ je identita. Okruh endomorfismů bývá značen End(X), kde X je nahrazeno označením původní struktury. Pierścień endomorfizmów – pierścień skojarzony z pewnym rodzajem obiektów, który zawiera pewną informację o jego własnościach wewnętrznych. In mathematics, the endomorphisms of an abelian group X form a ring. This ring is called the endomorphism ring of X, denoted by End(X); the set of all homomorphisms of X into itself. Addition of endomorphisms arises naturally in a pointwise manner and multiplication via endomorphism composition. Using these operations, the set of endomorphisms of an abelian group forms a (unital) ring, with the zero map as additive identity and the identity map as multiplicative identity.
owl:sameAs
dbr:Endomorphism_ring n20:0g7b4 wd:Q2896709 dbpedia-ja:自己準同型環 dbpedia-pl:Pierścień_endomorfizmów dbpedia-cs:Okruh_endomorfismů n35:2gbnf dbpedia-nl:Endomorfismenring dbpedia-sv:Endomorfiring dbpedia-he:חוג_האנדומורפיזמים
foaf:topic
n5: dbr:Grothendieck_category dbr:Pincherle_derivative dbr:List_of_abstract_algebra_topics dbr:Semi-simplicity dbr:Additive_category dbr:Glossary_of_module_theory n18:s_lemma dbr:Division_algebra dbr:Associative_algebra dbr:Vector_space dbr:Serial_module dbr:Continuous_module dbr:Spinor wikipedia-en:Endomorphism_ring dbr:Complex_multiplication dbr:Complex_multiplication_of_abelian_varieties dbr:Von_Neumann_regular_ring dbr:Clean_ring dbr:Locally_cyclic_group dbr:Tilting_theory dbr:Connection_form dbr:Algebraically_compact_module dbr:Division_ring dbr:Frobenius–Schur_indicator dbr:Rosati_involution dbr:Auslander_algebra n25: dbr:Finite_topology dbr:Dense_submodule dbr:Prüfer_group n26:this dbr:Cyclic_group dbr:Semisimple_module dbr:Injective_module dbr:Semi-local_ring dbr:Ring_of_endomorphisms dbr:Crystalline_cohomology dbr:Endomorphism_algebra dbr:Supersingular_elliptic_curve dbr:Lie_algebra dbr:Ring_theory n30:-algebra dbr:Gabriel–Popescu_theorem dbr:Group_homomorphism dbr:Decomposition_of_a_module dbr:Noetherian_ring dbr:Local_ring dbr:Abelian_variety dbr:Fitting_lemma dbr:Polynomial_ring dbr:Semiring dbr:Eisenstein_ideal dbr:Simple_module dbr:Depth_of_noncommutative_subrings dbr:Module_homomorphism dbr:Primitive_ring dbr:Zero_ring dbr:Glossary_of_ring_theory n39:s_embedding_theorem dbr:Zero_divisor dbr:Preadditive_category dbr:Endomorphism_ring_of_an_abelian_group dbr:Automorphism dbr:Indecomposable_module dbr:Semiprimitive_ring dbr:Endomorphism
wdrs:describedby
n10:s_lemma n17:Pointwise n17:Set n24:Pointwise n17:Vector_space n32:
dct:subject
dbc:Category_theory dbc:Module_theory dbc:Ring_theory
dbo:wikiPageID
59623
dbo:wikiPageRevisionID
1104382182
dbo:wikiPageWikiLink
dbr:Function_composition dbr:Mathematics dbr:Preadditive_category dbr:Injective_module dbr:Cengage_Learning dbr:Composition_length dbc:Module_theory dbr:Category_of_rings dbr:Identity_map dbr:Local_ring dbr:Clean_ring dbc:Category_theory dbr:Simple_module dbr:Commutative_ring dbr:Matrix_ring dbr:Near-ring dbr:Identity_element dbr:Continuous_module dbr:Homomorphism n19: dbr:Initial_object dbr:Free_module dbr:Endomorphism dbc:Ring_theory dbr:Semiprimary_ring dbr:Pointwise dbr:Algebra_over_a_field dbr:Algebra_over_a_ring dbr:Associative dbr:Semisimple_module dbr:Morita_equivalence dbr:Finitely_generated_module dbr:Discrete_module dbr:Uniform_module dbr:Integer dbr:Projective_module n25: dbr:Module_homomorphism dbr:Indecomposable_module dbr:Identity_function dbr:Zero_map dbr:Zero_morphism dbr:Vector_space n29: n31: dbr:Progenerator dbr:Division_ring dbr:Uniserial_module n33: dbr:Addison-Wesley dbr:Additive_map dbr:Non-commutative_ring n18:s_lemma dbr:Abelian_group dbr:Von_Neumann_regular_ring n41: dbr:Additive_identity
dbo:wikiPageExternalLink
n22: n23:ring
foaf:isPrimaryTopicOf
wikipedia-en:Endomorphism_ring
prov:wasDerivedFrom
n16:0
n40:hypernym
dbr:Set
dbo:abstract
In de algebra, een deelgebied van de wiskunde, bestaat de endomorfismenring van een abelse groep uit de endomorfismen van die groep. Deze endomorfismen vormen een ring, onder de elementsgewijze optelling en de functiecompositie als vermenigvuldiging. In mathematics, the endomorphisms of an abelian group X form a ring. This ring is called the endomorphism ring of X, denoted by End(X); the set of all homomorphisms of X into itself. Addition of endomorphisms arises naturally in a pointwise manner and multiplication via endomorphism composition. Using these operations, the set of endomorphisms of an abelian group forms a (unital) ring, with the zero map as additive identity and the identity map as multiplicative identity. The functions involved are restricted to what is defined as a homomorphism in the context, which depends upon the category of the object under consideration. The endomorphism ring consequently encodes several internal properties of the object. As the resulting object is often an algebra over some ring R, this may also be called the endomorphism algebra. An abelian group is the same thing as a module over the ring of integers, which is the initial object in the category of rings. In a similar fashion, if R is any commutative ring, the endomorphisms of an R-module form an algebra over R by the same axioms and derivation. In particular, if R is a field F, its modules M are vector spaces V and their endomorphism rings are algebras over the field F. 抽象代数学において、アーベル群 X の自己準同型環(英: endomorphism ring)End(X) は、X からそれ自身への準同型写像(X 上の自己準同型)すべてからなる集合である。加法は()で定義され、積は写像の合成で定義される。 自己準同型環の元となる「準同型」が何を指すものかは文脈によって異なり、これは考えている対象の圏に依存する。その結果、自己準同型環は対象のいくつかの内在的な性質を受け継いでいる。自己準同型環はしばしばある環上の多元環(代数)であり、自己準同型多元環(英: endomorphism algebra; 自己準同型代数)とも呼ばれる。 Pierścień endomorfizmów – pierścień skojarzony z pewnym rodzajem obiektów, który zawiera pewną informację o jego własnościach wewnętrznych. Inom matematiken är endomorfiringen av en abelsk grupp X, betecknad med End(X), mängden av alla homomorfier av X till sig själv. Additionen definieras som punktvis addition av funktioner och multiplikationen definieras som funktionssammansättning. Okruh endomorfismů je matematická struktura z oboru abstraktní algebry. Jejími prvky jsou endomorfismy nějakého objektu (jiné struktury) a dvě operace – skládání endomorfismů tohoto objektu, která realizuje „násobení“, a původní operace sčítání na objektu, přičemž výsledná struktura splňuje axiomy okruhu. Nulovým prvkem je endomorfismus zobrazující vše na nulový prvek původní struktury a neutrálním prvkem vzhledem k „násobení“ je identita. Okruh endomorfismů bývá značen End(X), kde X je nahrazeno označením původní struktury.
dbp:id
p/e035610
dbp:title
Endomorphism ring
dbo:wikiPageLength
8828
dbp:wikiPageUsesTemplate
dbt:Short_description dbt:Sfn dbt:Springer dbt:Citation