About: Methylation, as an epigenetic modification, can affect gene expression and play a role in the occurrence and development of cancer. This research is devoted to discover methylated-differentially expressed genes (MDEGs) in esophageal squamous cell carcinoma (ESCC) and explore special associated pathways. We downloaded GSE51287 methylation profiles and GSE26886 expression profiles from GEO DataSets, and performed a comprehensive bioinformatics analysis. Totally, 19 hypermethylated, lowly expressed genes (Hyper-LGs) were identified, and involved in regulation of cell proliferation, phosphorus metabolic process and protein kinase activity. Meanwhile, 17 hypomethylated, highly expressed genes (Hypo-HGs) were participated in collagen catabolic process, metallopeptidase and cytokine activity. Pathway analysis determined that Hyper-LGs were enriched in arachidonic acid metabolism pathway, while Hypo-HGs were primarily associated with the cytokine-cytokine receptor interaction pathway. IL 6, MMP3, MMP9, SPP1 were identified as hub genes based on the PPI network that combined 7 ranked methods included in cytoHubba, and verification was performed in human tissues. Our integrated analysis identified many novel genetic lesions in ESCC and provides a crucial molecular foundation to improve our understanding of ESCC. Hub genes, including IL 6, MMP3, MMP9 and SPP1, could be considered for use as aberrant methylation-based biomarkers to facilitate the accurate diagnosis and therapy of ESCC.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Methylation, as an epigenetic modification, can affect gene expression and play a role in the occurrence and development of cancer. This research is devoted to discover methylated-differentially expressed genes (MDEGs) in esophageal squamous cell carcinoma (ESCC) and explore special associated pathways. We downloaded GSE51287 methylation profiles and GSE26886 expression profiles from GEO DataSets, and performed a comprehensive bioinformatics analysis. Totally, 19 hypermethylated, lowly expressed genes (Hyper-LGs) were identified, and involved in regulation of cell proliferation, phosphorus metabolic process and protein kinase activity. Meanwhile, 17 hypomethylated, highly expressed genes (Hypo-HGs) were participated in collagen catabolic process, metallopeptidase and cytokine activity. Pathway analysis determined that Hyper-LGs were enriched in arachidonic acid metabolism pathway, while Hypo-HGs were primarily associated with the cytokine-cytokine receptor interaction pathway. IL 6, MMP3, MMP9, SPP1 were identified as hub genes based on the PPI network that combined 7 ranked methods included in cytoHubba, and verification was performed in human tissues. Our integrated analysis identified many novel genetic lesions in ESCC and provides a crucial molecular foundation to improve our understanding of ESCC. Hub genes, including IL 6, MMP3, MMP9 and SPP1, could be considered for use as aberrant methylation-based biomarkers to facilitate the accurate diagnosis and therapy of ESCC.
Subject
  • Immune system
  • Epigenetics
  • DNA
  • Cell cycle
  • EC 3.4.24
  • RTT
  • Gastrointestinal cancer
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software