About: OBJECTIVE: All respiratory care represents some risk of becoming an Aerosol Generating Procedure (AGP) during COVID‐19 patient management. Personal Protective Equipment (PPE) and Environmental Control/Engineering is advised. High Velocity Nasal Insufflation (HVNI) and High Flow Nasal Cannula (HFNC) deliver High Flow Oxygen (HFO) therapy, established as a competent means of supporting oxygenation for acute respiratory distress patients, including that precipitated by COVID‐19. Although unlikely to present a disproportionate particle dispersal risk, AGP from HFO continues to be a concern. Previously, we published a preliminary model. Here, we present a subsequent high‐resolution simulation (higher complexity/reliability) to provide a more accurate and precise particle characterization on the effect of surgical masks on patients during HVNI, Low‐Flow Oxygen therapy (LFO2), and tidal breathing. METHODS: This in‐silico modeling study of HVNI, LFO2, and tidal breathing presents ANSYS Fluent Computational Fluid Dynamics simulations that evaluate the effect of Type I surgical mask use over patient face on particle/droplet behavior. RESULTS: This in‐silico modeling simulation study of HVNI (40L∙min(‐1)) with a simulated surgical mask suggests 88.8% capture of exhaled particulate mass in the mask, compared to 77.4% in LFO2 (6L∙min(‐1)) capture, with particle distribution escaping to the room (>1m from face) lower for HVNI+Mask versus LFO2+Mask (8.23% versus 17.2%). The overwhelming proportion of particulate escape was associated with mask‐fit designed model gaps. Particle dispersion was associated with lower velocity. CONCLUSIONS: These simulations suggest employing a surgical mask over the HVNI interface may be useful in reduction of particulate mass distribution associated with AGPs. This article is protected by copyright. All rights reserved   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • OBJECTIVE: All respiratory care represents some risk of becoming an Aerosol Generating Procedure (AGP) during COVID‐19 patient management. Personal Protective Equipment (PPE) and Environmental Control/Engineering is advised. High Velocity Nasal Insufflation (HVNI) and High Flow Nasal Cannula (HFNC) deliver High Flow Oxygen (HFO) therapy, established as a competent means of supporting oxygenation for acute respiratory distress patients, including that precipitated by COVID‐19. Although unlikely to present a disproportionate particle dispersal risk, AGP from HFO continues to be a concern. Previously, we published a preliminary model. Here, we present a subsequent high‐resolution simulation (higher complexity/reliability) to provide a more accurate and precise particle characterization on the effect of surgical masks on patients during HVNI, Low‐Flow Oxygen therapy (LFO2), and tidal breathing. METHODS: This in‐silico modeling study of HVNI, LFO2, and tidal breathing presents ANSYS Fluent Computational Fluid Dynamics simulations that evaluate the effect of Type I surgical mask use over patient face on particle/droplet behavior. RESULTS: This in‐silico modeling simulation study of HVNI (40L∙min(‐1)) with a simulated surgical mask suggests 88.8% capture of exhaled particulate mass in the mask, compared to 77.4% in LFO2 (6L∙min(‐1)) capture, with particle distribution escaping to the room (>1m from face) lower for HVNI+Mask versus LFO2+Mask (8.23% versus 17.2%). The overwhelming proportion of particulate escape was associated with mask‐fit designed model gaps. Particle dispersion was associated with lower velocity. CONCLUSIONS: These simulations suggest employing a surgical mask over the HVNI interface may be useful in reduction of particulate mass distribution associated with AGPs. This article is protected by copyright. All rights reserved
subject
  • Macintosh internals
  • Occupational safety and health
  • Physical chemistry
  • Respiratory therapy
  • Safety engineering
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software