About: The smooth muscle of the airways is exposed to continuously changing mechanical forces during normal breathing. The mechanical oscillations that occur during breathing have profound effects on airway tone and airway responsiveness both in experimental animals and humans in vivo and in isolated airway tissues in vitro. Experimental evidence suggests that alterations in the contractile and mechanical properties of airway smooth muscle tissues caused by mechanical perturbations result from adaptive changes in the organization of the cytoskeletal architecture of the smooth muscle cell. The cytoskeleton is a dynamic structure that undergoes rapid reorganization in response to external mechanical and pharmacologic stimuli. Contractile stimulation initiates the assembly of cytoskeletal/extracellular matrix adhesion complex proteins into large macromolecular signaling complexes (adhesomes) that undergo activation to mediate the polymerization and reorganization of a submembranous network of actin filaments at the cortex of the cell. Cortical actin polymerization is catalyzed by Neuronal-Wiskott–Aldrich syndrome protein (N-WASP) and the Arp2/3 complex, which are activated by pathways regulated by paxillin and the small GTPase, cdc42. These processes create a strong and rigid cytoskeletal framework that may serve to strengthen the membrane for the transmission of force generated by the contractile apparatus to the extracellular matrix, and to enable the adaptation of smooth muscle cells to mechanical stresses. This model for the regulation of airway smooth muscle function can provide novel perspectives to explain the normal physiologic behavior of the airways and pathophysiologic properties of the airways in asthma.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • The smooth muscle of the airways is exposed to continuously changing mechanical forces during normal breathing. The mechanical oscillations that occur during breathing have profound effects on airway tone and airway responsiveness both in experimental animals and humans in vivo and in isolated airway tissues in vitro. Experimental evidence suggests that alterations in the contractile and mechanical properties of airway smooth muscle tissues caused by mechanical perturbations result from adaptive changes in the organization of the cytoskeletal architecture of the smooth muscle cell. The cytoskeleton is a dynamic structure that undergoes rapid reorganization in response to external mechanical and pharmacologic stimuli. Contractile stimulation initiates the assembly of cytoskeletal/extracellular matrix adhesion complex proteins into large macromolecular signaling complexes (adhesomes) that undergo activation to mediate the polymerization and reorganization of a submembranous network of actin filaments at the cortex of the cell. Cortical actin polymerization is catalyzed by Neuronal-Wiskott–Aldrich syndrome protein (N-WASP) and the Arp2/3 complex, which are activated by pathways regulated by paxillin and the small GTPase, cdc42. These processes create a strong and rigid cytoskeletal framework that may serve to strengthen the membrane for the transmission of force generated by the contractile apparatus to the extracellular matrix, and to enable the adaptation of smooth muscle cells to mechanical stresses. This model for the regulation of airway smooth muscle function can provide novel perspectives to explain the normal physiologic behavior of the airways and pathophysiologic properties of the airways in asthma.
subject
  • Proteins
  • Cytoskeleton
  • Extracellular matrix
  • Cell anatomy
  • Matrices (biology)
  • Muscular system
  • Muscle tissue
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software