AttributesValues
type
value
  • Modern logic engines widely fail to decide axiom sets that are satisfiable only in an infinite domain. This paper specifies an algorithm that automatically generates a database of independent infinity axiom sets with fewer than 1000 characters. It starts with complete theories of pure first-order logic with only one binary relation (FOL[Formula: see text]) and generates further infinity axiom sets S of FOL[Formula: see text] with fewer than 1000 characters such that no other infinity axiom set with fewer than 1000 characters exists in the database that implies S. We call the generated infinity axiom sets S “superpostulates”. Any formula that is derivable from (satisfiable) superpostulates is also satisfiable. Thus far, we have generated a database with 2346 infinity superpostulates by running our algorithm. This paper ends by identifying three practical uses of the algorithmic generation of such a database: (i) for systematic investigations of infinity axiom sets, (ii) for deciding infinity axiom sets and (iii) for the development of saturation algorithms.
subject
  • Databases
  • Model theory
  • Concepts in logic
  • Database management systems
  • Mathematical terminology
  • Logic
  • Formal systems
  • Mathematical axioms
  • Assumption
  • Philosophy of logic
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software