AttributesValues
type
value
  • Human Activity Recognition (HAR) is one of the critical subjects of research in health and human machine interaction fields in recent years. Algorithms such as Support Vector Machine (SVM), K-Nearest Neighbors (K-NN), Decision Tree (DT) and many other algorithms were previously implemented to serve this common goal but most of the traditional Machine learning proposed solutions were not satisfying in term of accuracy and real time testing process. For that, a human activities analysis and recognition system with an embedded trained ANN model on Raspberry PI for an online testing process is proposed in this work. This paper includes a comparative study between the Artificial Neural Network (ANN) and the Recurrent Neural Network (RNN), using signals produced by the accelerometer and gyroscope, embedded within the BlueNRG-Tile sensor. After evaluate algorithms performance in terms of accuracy and precision which reached an accuracy of 82% for ANN and 99% for RNN, obtained ANN model was implemented in a Raspberry PI for real-time predictions. Results show that the system provides a real-time human activity recognition with an accuracy of 86%.
Subject
  • Classification algorithms
  • Artificial neural networks
  • Software quality
  • Applied machine learning
  • Educational hardware
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software