About: The relative motion of moving objects is an essential research topic in geographical information science (GIScience), which supports the innovation of geodatabases, spatial indexing, and geospatial services. This analysis is very popular in the domains of urban governance, transportation engineering, logistics and geospatial information services for individuals or industrials. Importantly, data models of moving objects are one of the most crucial approaches to support the analysis for dynamic relative motion between moving objects, even in the age of big data and cloud computing. Traditional geographic information systems (GIS) usually organize moving objects as point objects in absolute coordinated space. The derivation of relative motions among moving objects is not efficient because of the additional geo-computation of transformation between absolute space and relative space. Therefore, current GISs require an innovative approach to directly store, analyze and interpret the relative relationships of moving objects to support their efficient analysis. This paper proposes a relative space-based GIS data model of moving objects (RSMO) to construct, operate and analyze moving objects’ relationships and introduces two algorithms (relationship querying and relative relationship dynamic pattern matching) to derive and analyze the dynamic relationships of moving objects. Three scenarios (epidemic spreading, tracker finding, and motion-trend derivation of nearby crowds) are implemented to demonstrate the feasibility of the proposed model. The experimental results indicates the execution times of the proposed model are approximately 5–50% those of the absolute GIS method for the same function of these three scenarios. It’s better computational performance of the proposed model when analyzing the relative relationships of moving objects than the absolute methods in a famous commercial GIS software based on this experimental results. The proposed approach fills the gap of traditional GIS and shows promise for relative space-based geo-computation, analysis and service.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • The relative motion of moving objects is an essential research topic in geographical information science (GIScience), which supports the innovation of geodatabases, spatial indexing, and geospatial services. This analysis is very popular in the domains of urban governance, transportation engineering, logistics and geospatial information services for individuals or industrials. Importantly, data models of moving objects are one of the most crucial approaches to support the analysis for dynamic relative motion between moving objects, even in the age of big data and cloud computing. Traditional geographic information systems (GIS) usually organize moving objects as point objects in absolute coordinated space. The derivation of relative motions among moving objects is not efficient because of the additional geo-computation of transformation between absolute space and relative space. Therefore, current GISs require an innovative approach to directly store, analyze and interpret the relative relationships of moving objects to support their efficient analysis. This paper proposes a relative space-based GIS data model of moving objects (RSMO) to construct, operate and analyze moving objects’ relationships and introduces two algorithms (relationship querying and relative relationship dynamic pattern matching) to derive and analyze the dynamic relationships of moving objects. Three scenarios (epidemic spreading, tracker finding, and motion-trend derivation of nearby crowds) are implemented to demonstrate the feasibility of the proposed model. The experimental results indicates the execution times of the proposed model are approximately 5–50% those of the absolute GIS method for the same function of these three scenarios. It’s better computational performance of the proposed model when analyzing the relative relationships of moving objects than the absolute methods in a famous commercial GIS software based on this experimental results. The proposed approach fills the gap of traditional GIS and shows promise for relative space-based geo-computation, analysis and service.
Subject
  • Distributed computing problems
  • Technology forecasting
  • Education in Manhattan
  • Geographic information systems
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software