About: Background. Community-acquired pneumonia (CAP) remains an important cause of morbidity and mortality. Polymerase chain reaction (PCR) has been shown to be more sensitive than current standard microbiological methods and, therefore, may improve the accuracy of microbiological diagnosis for patients with CAP. Methods. Conventional detection techniques and multiplex real-time PCR for atypical bacteria and respiratory viruses were performed on samples collected from 105 adults enrolled in a prospective study. An infiltrate was visible on each patient's chest radiograph, and a pneumonia severity index score was determined for each patient. Results. Microbiological diagnoses were determined for 52 (49.5%) of 105 patients by conventional techniques and for 80 (76%) of 105 patients by real-time PCR. The time to obtain the result of real-time PCR could be reduced to 6 h. PCR methodology was significantly more sensitive for the detection of atypical pathogens and viruses (P ⩽ .001). Respiratory viral infections and mixed infections were detected in 15 (14.2%) and 3 (2.8%) of 105 patients, respectively, by conventional methods, but were detected in 59 (56.2%) and 28 (26.5%) of 105, respectively, by real-time PCR. Presence of a mixed infection was significantly associated with severe pneumonia (P = .002). Human rhinoviruses and coronaviruses, OC43 and 229E, were frequently identified pathogens. Conclusions. The combined real-time PCR assay is more sensitive for diagnosis of the main viruses and atypical bacteria that cause CAP compared with conventional methods, and obtains results in a clinically relevant time period.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Background. Community-acquired pneumonia (CAP) remains an important cause of morbidity and mortality. Polymerase chain reaction (PCR) has been shown to be more sensitive than current standard microbiological methods and, therefore, may improve the accuracy of microbiological diagnosis for patients with CAP. Methods. Conventional detection techniques and multiplex real-time PCR for atypical bacteria and respiratory viruses were performed on samples collected from 105 adults enrolled in a prospective study. An infiltrate was visible on each patient's chest radiograph, and a pneumonia severity index score was determined for each patient. Results. Microbiological diagnoses were determined for 52 (49.5%) of 105 patients by conventional techniques and for 80 (76%) of 105 patients by real-time PCR. The time to obtain the result of real-time PCR could be reduced to 6 h. PCR methodology was significantly more sensitive for the detection of atypical pathogens and viruses (P ⩽ .001). Respiratory viral infections and mixed infections were detected in 15 (14.2%) and 3 (2.8%) of 105 patients, respectively, by conventional methods, but were detected in 59 (56.2%) and 28 (26.5%) of 105, respectively, by real-time PCR. Presence of a mixed infection was significantly associated with severe pneumonia (P = .002). Human rhinoviruses and coronaviruses, OC43 and 229E, were frequently identified pathogens. Conclusions. The combined real-time PCR assay is more sensitive for diagnosis of the main viruses and atypical bacteria that cause CAP compared with conventional methods, and obtains results in a clinically relevant time period.
Subject
  • Pneumonia
  • Biotechnology
  • Microbiology
  • Microscopy
  • Polymerase chain reaction
  • Infectious diseases
  • Amplifiers
  • American inventions
  • DNA profiling techniques
  • Hoffmann-La Roche
  • Laboratory techniques
  • Molecular biology
  • Molecular biology techniques
  • Branches of biology
  • 1670s in science
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software