About: On the morning of November 9th 2016, the world woke up to the shocking outcome of the US Presidential elections: Donald Trump was the 45th President of the United States of America. An unexpected event that still has tremendous consequences all over the world. Today, we know that a minority of social bots, automated social media accounts mimicking humans, played a central role in spreading divisive messages and disinformation, possibly contributing to Trump's victory. In the aftermath of the 2016 US elections, the world started to realize the gravity of widespread deception in social media. Following Trump's exploit, we witnessed to the emergence of a strident dissonance between the multitude of efforts for detecting and removing bots, and the increasing effects that these malicious actors seem to have on our societies. This paradox opens a burning question: What strategies should we enforce in order to stop this social bot pandemic? In these times, during the run-up to the 2020 US elections, the question appears as more crucial than ever. What stroke social, political and economic analysts after 2016, deception and automation, has been however a matter of study for computer scientists since at least 2010. In this work, we briefly survey the first decade of research in social bot detection. Via a longitudinal analysis, we discuss the main trends of research in the fight against bots, the major results that were achieved, and the factors that make this never-ending battle so challenging. Capitalizing on lessons learned from our extensive analysis, we suggest possible innovations that could give us the upper hand against deception and manipulation. Studying a decade of endeavours at social bot detection can also inform strategies for detecting and mitigating the effects of other, more recent, forms of online deception, such as strategic information operations and political trolls.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • On the morning of November 9th 2016, the world woke up to the shocking outcome of the US Presidential elections: Donald Trump was the 45th President of the United States of America. An unexpected event that still has tremendous consequences all over the world. Today, we know that a minority of social bots, automated social media accounts mimicking humans, played a central role in spreading divisive messages and disinformation, possibly contributing to Trump's victory. In the aftermath of the 2016 US elections, the world started to realize the gravity of widespread deception in social media. Following Trump's exploit, we witnessed to the emergence of a strident dissonance between the multitude of efforts for detecting and removing bots, and the increasing effects that these malicious actors seem to have on our societies. This paradox opens a burning question: What strategies should we enforce in order to stop this social bot pandemic? In these times, during the run-up to the 2020 US elections, the question appears as more crucial than ever. What stroke social, political and economic analysts after 2016, deception and automation, has been however a matter of study for computer scientists since at least 2010. In this work, we briefly survey the first decade of research in social bot detection. Via a longitudinal analysis, we discuss the main trends of research in the fight against bots, the major results that were achieved, and the factors that make this never-ending battle so challenging. Capitalizing on lessons learned from our extensive analysis, we suggest possible innovations that could give us the upper hand against deception and manipulation. Studying a decade of endeavours at social bot detection can also inform strategies for detecting and mitigating the effects of other, more recent, forms of online deception, such as strategic information operations and political trolls.
Subject
  • Public relations
  • American investors
  • Psychopathy
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software