About: The protein sequence-structure gap results from the contrast between rapid, low-cost deep sequencing, and slow, expensive experimental structure determination techniques. Comparative homology modelling may have the potential to close this gap by predicting protein structure in target sequences using existing experimentally solved structures as templates. This paper presents the first use of force-directed graphs for the visualization of sequence space in two dimensions, and applies them to the choice of suitable RNA-dependent RNA polymerase (RdRP) target-template pairs within human-infective RNA virus genera. Measures of centrality in protein sequence space for each genus were also derived and used to identify centroid nearest-neighbour sequences (CNNs) potentially useful for production of homology models most representative of their genera. Homology modelling was then carried out for target-template pairs in different species, different genera and different families, and model quality assessed using several metrics. Reconstructed ancestral RdRP sequences for individual genera were also used as templates for the production of ancestral RdRP homology models. High quality ancestral RdRP models were consistently produced, as were good quality models for target-template pairs in the same genus. Homology modelling between genera in the same family produced mixed results and inter-family modelling was unreliable. We present a protocol for the production of optimal RdRP homology models for use in further experiments, e.g. docking to discover novel anti-viral compounds. (219 words)   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • The protein sequence-structure gap results from the contrast between rapid, low-cost deep sequencing, and slow, expensive experimental structure determination techniques. Comparative homology modelling may have the potential to close this gap by predicting protein structure in target sequences using existing experimentally solved structures as templates. This paper presents the first use of force-directed graphs for the visualization of sequence space in two dimensions, and applies them to the choice of suitable RNA-dependent RNA polymerase (RdRP) target-template pairs within human-infective RNA virus genera. Measures of centrality in protein sequence space for each genus were also derived and used to identify centroid nearest-neighbour sequences (CNNs) potentially useful for production of homology models most representative of their genera. Homology modelling was then carried out for target-template pairs in different species, different genera and different families, and model quality assessed using several metrics. Reconstructed ancestral RdRP sequences for individual genera were also used as templates for the production of ancestral RdRP homology models. High quality ancestral RdRP models were consistently produced, as were good quality models for target-template pairs in the same genus. Homology modelling between genera in the same family produced mixed results and inter-family modelling was unreliable. We present a protocol for the production of optimal RdRP homology models for use in further experiments, e.g. docking to discover novel anti-viral compounds. (219 words)
Subject
  • RNA
  • Genetics
  • Gene expression
  • Means
  • Protein structure
  • Evolutionary biology
  • EC 2.7.7
  • Plant taxonomy
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software