About: Japanese encephalitis virus (JEV), a major cause of Japanese encephalitisis, is an arbovirus that belongs to the genus Flavivirus of the family Flaviviridae. Currently, there is no effective drugs available for the treatment of JEV infection. Therefore, it is important to establish efficient antiviral screening system for the development of antiviral drugs. In this study, we constructed a full-length infectious clone of eGFP-JEV reporter virus by inserting the eGFP gene into the capsid-coding region of the viral genome. The reporter virus RNA transfected-BHK-21 cells generated robust eGFP fluorescence signals that were correlated well with viral replication. The reporter virus displayed growth kinetics similar to wild type (WT) virus although replicated a little slower. Using a known JEV inhibitor, NITD008, we demonstrated that the reporter virus could be used to identify inhibitors against JEV. Furthermore, an eGFP-JEV-based high throughput screening (HTS) assay was established in a 96-well format and used for screening of 1,443 FDA-approved drugs. Sixteen hit drugs were identified to be active against JEV. Among them, five compounds which are lonafarnib, cetylpyridinium chlorid, cetrimonium bromide, nitroxoline and hexachlorophene, are newly discovered inhibitors of JEV, providing potential new therapies for treatment of JEV infection.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Japanese encephalitis virus (JEV), a major cause of Japanese encephalitisis, is an arbovirus that belongs to the genus Flavivirus of the family Flaviviridae. Currently, there is no effective drugs available for the treatment of JEV infection. Therefore, it is important to establish efficient antiviral screening system for the development of antiviral drugs. In this study, we constructed a full-length infectious clone of eGFP-JEV reporter virus by inserting the eGFP gene into the capsid-coding region of the viral genome. The reporter virus RNA transfected-BHK-21 cells generated robust eGFP fluorescence signals that were correlated well with viral replication. The reporter virus displayed growth kinetics similar to wild type (WT) virus although replicated a little slower. Using a known JEV inhibitor, NITD008, we demonstrated that the reporter virus could be used to identify inhibitors against JEV. Furthermore, an eGFP-JEV-based high throughput screening (HTS) assay was established in a 96-well format and used for screening of 1,443 FDA-approved drugs. Sixteen hit drugs were identified to be active against JEV. Among them, five compounds which are lonafarnib, cetylpyridinium chlorid, cetrimonium bromide, nitroxoline and hexachlorophene, are newly discovered inhibitors of JEV, providing potential new therapies for treatment of JEV infection.
Subject
  • Virology
  • Cell imaging
  • Neglected diseases
  • Tropical diseases
  • Virus genera
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software