AttributesValues
type
value
  • Current prophylactic and therapeutic strategies targeting human influenza viruses include vaccines and antivirals. Given variable rates of vaccine efficacy and antiviral resistance, alternative strategies are urgently required to improve disease outcomes. Here we describe the use of HiSeq deep sequencing to analyze host gene expression in primary human alveolar epithelial type II cells infected with highly pathogenic avian influenza H5N1 virus. At 24 hours post-infection, 623 host genes were significantly upregulated, including the cell adhesion molecule CEACAM1. H5N1 virus infection stimulated significantly higher CEACAM1 protein expression when compared to influenza A PR8 (H1N1) virus, suggesting a key role for CEACAM1 in influenza virus pathogenicity. Furthermore, silencing of endogenous CEACAM1 resulted in reduced levels of proinflammatory cytokine/chemokine production, as well as reduced levels of virus replication following H5N1 infection. Our study provides evidence for the involvement of CEACAM1 in a clinically relevant model of H5N1 infection and may assist in the development of host-oriented antiviral strategies.
Subject
  • Virology
  • Genetics
  • Infectious diseases
  • Influenza A virus subtype H5N1
  • Bird diseases
  • Clusters of differentiation
  • Subtypes of Influenza A virus
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software