About: Graph convolutional neural networks have been widely studied for semi-supervised classification on graph-structured data in recent years. They usually learn node representations by transforming, propagating, aggregating node features and minimizing the prediction loss on labeled nodes. However, the pseudo labels generated on unlabeled nodes are usually overlooked during the learning process. In this paper, we propose a soft labels guided graph attention network (SLGAT) to improve the performance of node representation learning by leveraging generated pseudo labels. Unlike the prior graph attention networks, our SLGAT uses soft labels as guidance to learn different weights for neighboring nodes, which allows SLGAT to pay more attention to the features closely related to the central node labels during the feature aggregation process. We further propose a self-training based optimization method to train SLGAT on both labeled and pseudo labeled nodes. Specifically, we first pre-train SLGAT on labeled nodes and generate pseudo labels for unlabeled nodes. Next, for each iteration, we train SLGAT on the combination of labeled and pseudo labeled nodes, and then generate new pseudo labels for further training. Experimental results on semi-supervised node classification show that SLGAT achieves state-of-the-art performance.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Graph convolutional neural networks have been widely studied for semi-supervised classification on graph-structured data in recent years. They usually learn node representations by transforming, propagating, aggregating node features and minimizing the prediction loss on labeled nodes. However, the pseudo labels generated on unlabeled nodes are usually overlooked during the learning process. In this paper, we propose a soft labels guided graph attention network (SLGAT) to improve the performance of node representation learning by leveraging generated pseudo labels. Unlike the prior graph attention networks, our SLGAT uses soft labels as guidance to learn different weights for neighboring nodes, which allows SLGAT to pay more attention to the features closely related to the central node labels during the feature aggregation process. We further propose a self-training based optimization method to train SLGAT on both labeled and pseudo labeled nodes. Specifically, we first pre-train SLGAT on labeled nodes and generate pseudo labels for unlabeled nodes. Next, for each iteration, we train SLGAT on the combination of labeled and pseudo labeled nodes, and then generate new pseudo labels for further training. Experimental results on semi-supervised node classification show that SLGAT achieves state-of-the-art performance.
Subject
  • Learning
  • Machine learning
  • Cognition
  • Graph theory
  • Mind
  • Cybernetics
  • Computer vision
  • Cognitive science
  • Artificial neural networks
  • Computational neuroscience
  • Cognitive psychology
  • Hypergraphs
  • Abstract data types
  • Graph data structures
  • Graphs
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software