About: ABSTRACT: The discovery of SARS-CoV-2, the responsible virus for the Covid-19 epidemic, has sparked a global health concern with many countries affected. Developing models that can interpret the epidemic and give common trend parameters are useful for prediction purposes by other countries that are at an earlier phase of the epidemic; it is also useful for future planning against viral respiratory diseases. One model is developed to interpret the fast-growth phase of the epidemic and another model for an interpretation of the entire data set. Both models agree reasonably with the data. It is shown by the first model that during the fast phase, the number of new infected cases depends on the total number of cases by a power-law relation with a scaling exponent equal to 0.82. The second model gives a duplication time in the range 1–3 days early in the start of the epidemic, and another parameter (α = 0.1–0.5) that deviates the progress of the epidemic from an exponential growth. Our models may be used for data interpretation and for guiding predictions regarding this disease, e.g., the onset of the maximum in the number of new cases. GRAPHIC ABSTRACT: [Image: see text] ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1140/epjp/s13360-020-00526-1) contains supplementary material, which is available to authorized users.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • ABSTRACT: The discovery of SARS-CoV-2, the responsible virus for the Covid-19 epidemic, has sparked a global health concern with many countries affected. Developing models that can interpret the epidemic and give common trend parameters are useful for prediction purposes by other countries that are at an earlier phase of the epidemic; it is also useful for future planning against viral respiratory diseases. One model is developed to interpret the fast-growth phase of the epidemic and another model for an interpretation of the entire data set. Both models agree reasonably with the data. It is shown by the first model that during the fast phase, the number of new infected cases depends on the total number of cases by a power-law relation with a scaling exponent equal to 0.82. The second model gives a duplication time in the range 1–3 days early in the start of the epidemic, and another parameter (α = 0.1–0.5) that deviates the progress of the epidemic from an exponential growth. Our models may be used for data interpretation and for guiding predictions regarding this disease, e.g., the onset of the maximum in the number of new cases. GRAPHIC ABSTRACT: [Image: see text] ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1140/epjp/s13360-020-00526-1) contains supplementary material, which is available to authorized users.
Subject
  • Virology
  • Hygiene
  • Epidemics
  • Biological hazards
  • Exponentials
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software