About: Crimean-Congo hemorrhagic fever virus (CCHFV) is one of the prioritized diseases of World Health Organization, considering its potential to create a public health emergency and more importantly, the absence of efficacious drugs and/or vaccines regarding treatment. The highly lethal nature characteristic to CCHFV restricts research to BSL-4 laboratories, which complicates effective research and developmental strategies. In consideration of antiviral therapies, RNA interference can be used to suppress viral replication by targeting viral genes. RNA interference uses small interfering RNAs (siRNAs) to silence genes. The aim of our study was to design siRNAs that inhibit CCHFV replication and can serve as a basis for further antiviral therapies. A549 cells were infected with CCHFV after transfection with the siRNAs. Following 72 hours, nucleic acid from the supernatant was extracted for Droplet Digital PCR analysis. Among the investigated siRNAs we identified four effective candidates against all three segments of CCHF genome: one for the S and M segments, whilst two for the L segment. Consequently, blocking any segment of CCHFV leads to changes in the virus copy number that indicates an antiviral effect of the siRNAs in vitro. The most active siRNAs were demonstrated a specific inhibitory effect against CCHFV in a dose-dependent manner. In summary, we demonstrated the ability of specific siRNAs to inhibit CCHFV replication in vitro. This promising result can be used in future anti-CCHFV therapy developments.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Crimean-Congo hemorrhagic fever virus (CCHFV) is one of the prioritized diseases of World Health Organization, considering its potential to create a public health emergency and more importantly, the absence of efficacious drugs and/or vaccines regarding treatment. The highly lethal nature characteristic to CCHFV restricts research to BSL-4 laboratories, which complicates effective research and developmental strategies. In consideration of antiviral therapies, RNA interference can be used to suppress viral replication by targeting viral genes. RNA interference uses small interfering RNAs (siRNAs) to silence genes. The aim of our study was to design siRNAs that inhibit CCHFV replication and can serve as a basis for further antiviral therapies. A549 cells were infected with CCHFV after transfection with the siRNAs. Following 72 hours, nucleic acid from the supernatant was extracted for Droplet Digital PCR analysis. Among the investigated siRNAs we identified four effective candidates against all three segments of CCHF genome: one for the S and M segments, whilst two for the L segment. Consequently, blocking any segment of CCHFV leads to changes in the virus copy number that indicates an antiviral effect of the siRNAs in vitro. The most active siRNAs were demonstrated a specific inhibitory effect against CCHFV in a dose-dependent manner. In summary, we demonstrated the ability of specific siRNAs to inhibit CCHFV replication in vitro. This promising result can be used in future anti-CCHFV therapy developments.
Subject
  • Virology
  • RNA
  • Hemorrhagic fevers
  • Tick-borne diseases
  • RNA interference
  • Nairoviridae
  • Molecular biology
  • Organizations established in 1948
  • RTT
  • RTTID
  • Arthropod-borne viral fevers and viral haemorrhagic fevers
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software