AttributesValues
type
value
  • This paper describes a prototype system for partial automation of customer service operations of a mobile telecommunications operator with a human-in-the loop conversational agent. The agent consists of an intent detection system for identifying the types of customer requests that it can handle appropriately, a slot filling information extraction system that integrates with the customer service database for a rule-based treatment of the common scenarios, and a template-based language generation system that builds response candidates that can be approved or amended by customer service operators. The main focus of this paper is on the system architecture and machine learning system structure design, and the observations of a limited pilot study performed to evaluate the proposed system on customer messages in Latvian. We also discuss the business requirements and practical application limitations and their influence on the design of the natural language processing components.
Subject
  • Machine learning
  • Artificial intelligence
  • Evaluation methods
  • Natural language processing
  • Industrial design
  • Customer service
  • Services marketing
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software