About: The recent emergence of the swine-origin influenza A H1N1 virus (S-OIV) poses a serious global health threat. Rapid detection and differentiation of S-OIV from seasonal influenza is crucial for patient management and control of the epidemics. A one-step, single-tube accelerated and quantitative S-OIV-specific H1 reverse transcription loop-mediated isothermal amplification (RTLAMP) assay for clinical diagnosis of S-OIV by targeting the H1 gene is reported in this article. A comparative evaluation of the H1-specific RTLAMP assay vis-à-vis the World Health Organization-approved real-time polymerase chain reaction (RTPCR), involving 239 acute-phase throat swab samples, demonstrated exceptionally higher sensitivity by picking up all of the 116 H1N1-positive cases and 36 additional positive cases among the negatives that were sequence-confirmed as S-OIV H1N1. None of the real-time RTPCR-positive samples were missed by the RTLAMP system. The comparative analysis revealed that S-OIV RTLAMP was up to tenfold more sensitive than the World Health Organization real-time RTPCR; it had a detection limit of 0.1 tissue culture infectious dosage of (50)/ml. One of the most attractive features of this isothermal gene amplification assay is that it seems to have an advantage in monitoring gene amplification by means of SYBR Green I dye-mediated naked-eye visualization within 30 minutes compared to 2 to 3 hours for a real-time reverse transcription polymerase chain reaction. This suggests that the RTLAMP assay is a valuable tool for rapid, real-time detection and quantification of S-OIV in acute-phase throat swab samples without requiring sophisticated equipment.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • The recent emergence of the swine-origin influenza A H1N1 virus (S-OIV) poses a serious global health threat. Rapid detection and differentiation of S-OIV from seasonal influenza is crucial for patient management and control of the epidemics. A one-step, single-tube accelerated and quantitative S-OIV-specific H1 reverse transcription loop-mediated isothermal amplification (RTLAMP) assay for clinical diagnosis of S-OIV by targeting the H1 gene is reported in this article. A comparative evaluation of the H1-specific RTLAMP assay vis-à-vis the World Health Organization-approved real-time polymerase chain reaction (RTPCR), involving 239 acute-phase throat swab samples, demonstrated exceptionally higher sensitivity by picking up all of the 116 H1N1-positive cases and 36 additional positive cases among the negatives that were sequence-confirmed as S-OIV H1N1. None of the real-time RTPCR-positive samples were missed by the RTLAMP system. The comparative analysis revealed that S-OIV RTLAMP was up to tenfold more sensitive than the World Health Organization real-time RTPCR; it had a detection limit of 0.1 tissue culture infectious dosage of (50)/ml. One of the most attractive features of this isothermal gene amplification assay is that it seems to have an advantage in monitoring gene amplification by means of SYBR Green I dye-mediated naked-eye visualization within 30 minutes compared to 2 to 3 hours for a real-time reverse transcription polymerase chain reaction. This suggests that the RTLAMP assay is a valuable tool for rapid, real-time detection and quantification of S-OIV in acute-phase throat swab samples without requiring sophisticated equipment.
Subject
  • Virology
  • Influenza
  • Laboratory techniques
  • Molecular biology
  • Organizations established in 1948
  • Pork
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software