AttributesValues
type
value
  • Abstract Severe acute respiratory syndrome (SARS) is caused by a novel coronavirus, SARS-CoV. Virus entry into cells is mediated through interactions between spike (S) glycoprotein and angiotensin-converting enzyme 2 (ACE2). Alanine scanning mutagenesis analysis was performed to identify determinants on ACE2 critical for SARS-CoV infection. Results indicated that charged amino acids between residues 22 and 57 were important, K26 and D30, in particular. Peptides representing various regions of ACE2 critical for virus infection were chemically synthesized and evaluated for antiviral activity. Two peptides (a.a. 22–44 and 22–57) exhibited a modest antiviral activity with IC50 of about 50 μM and 6 μM, respectively. One peptide comprised of two discontinuous segments of ACE2 (a.a. 22–44 and 351–357) artificially linked together by glycine, exhibited a potent antiviral activity with IC50 of about 0.1 μM. This novel peptide is a promising candidate as a therapeutic agent against this deadly emerging pathogen.
Subject
  • COVID-19
  • EC 3.4.17
  • Single-pass transmembrane proteins
  • 1919 ships
  • British K-class submarines
  • Sarbecovirus
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software