About: Background: We have previously shown that human mRNAs are present in saliva and can be used as biomarkers of oral cancer. In this study, we analyzed the integrity, sources, and stability of salivary RNA. Methods: We measured the integrity of salivary RNA with reverse transcription followed by PCR (RT-PCR) or RT-quantitative PCR (RT-qPCR). To study RNA entry sites into the oral cavity, we used RT-PCR analysis of salivary RNA from the 3 major salivary glands, gingival crevice fluid, and desquamated oral epithelial cells. We measured stability of the salivary β-actin mRNA by RT-qPCR of salivary RNA incubated at room temperature for different periods of time. We measured RNA association with other macromolecules by filtering saliva through pores of different sizes before performing RT-qPCR. To assess RNA–macromolecule interaction, we incubated saliva with Triton X-100 for different periods of time before performing RT-qPCR. Results: In most cases, we detected partial- to full-length salivary mRNAs and smaller amounts of middle and 3′ gene amplicons compared with the 5′. RNA was present in all oral fluids examined. Endogenous salivary β-actin mRNA degraded more slowly than exogenous β-actin mRNA, with half-lives of 12.2 and 0.4 min, respectively (P <0.001). Salivary RNA could not pass through 0.22 or 0.45 μm pores. Incubation of saliva with Triton X-100 accelerated degradation of salivary RNA. Conclusions: Saliva harbors both full-length and partially degraded forms of mRNA. RNA enters the oral cavity from different sources, and association with macromolecules may protect salivary RNA from degradation.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Background: We have previously shown that human mRNAs are present in saliva and can be used as biomarkers of oral cancer. In this study, we analyzed the integrity, sources, and stability of salivary RNA. Methods: We measured the integrity of salivary RNA with reverse transcription followed by PCR (RT-PCR) or RT-quantitative PCR (RT-qPCR). To study RNA entry sites into the oral cavity, we used RT-PCR analysis of salivary RNA from the 3 major salivary glands, gingival crevice fluid, and desquamated oral epithelial cells. We measured stability of the salivary β-actin mRNA by RT-qPCR of salivary RNA incubated at room temperature for different periods of time. We measured RNA association with other macromolecules by filtering saliva through pores of different sizes before performing RT-qPCR. To assess RNA–macromolecule interaction, we incubated saliva with Triton X-100 for different periods of time before performing RT-qPCR. Results: In most cases, we detected partial- to full-length salivary mRNAs and smaller amounts of middle and 3′ gene amplicons compared with the 5′. RNA was present in all oral fluids examined. Endogenous salivary β-actin mRNA degraded more slowly than exogenous β-actin mRNA, with half-lives of 12.2 and 0.4 min, respectively (P <0.001). Salivary RNA could not pass through 0.22 or 0.45 μm pores. Incubation of saliva with Triton X-100 accelerated degradation of salivary RNA. Conclusions: Saliva harbors both full-length and partially degraded forms of mRNA. RNA enters the oral cavity from different sources, and association with macromolecules may protect salivary RNA from degradation.
Subject
  • Biotechnology
  • RNA
  • RNA splicing
  • Animal anatomy
  • Dermatologic terminology
  • Exponentials
  • Molecular biology
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software